Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dedekind Unicode version

Theorem dedekind 24097
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 8831 with appropriate adjustments, states that, if  A completely preceeds  B, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem dedekind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simp2l 981 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  C_  RR )
2 simp1l 979 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  =/=  (/) )
3 simp1r 980 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  =/=  (/) )
4 n0 3477 . . . . . . . . 9  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
53, 4sylib 188 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z 
z  e.  B )
6 simp2r 982 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  C_  RR )
76sseld 3192 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
z  e.  RR ) )
8 ralcom 2713 . . . . . . . . . . . 12  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  <->  A. y  e.  B  A. x  e.  A  x  <  y )
9 breq2 4043 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  <  y  <->  x  <  z ) )
109ralbidv 2576 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( A. x  e.  A  x  <  y  <->  A. x  e.  A  x  <  z ) )
1110rspccv 2894 . . . . . . . . . . . 12  |-  ( A. y  e.  B  A. x  e.  A  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
128, 11sylbi 187 . . . . . . . . . . 11  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
13123ad2ant3 978 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  ->  A. x  e.  A  x  <  z ) )
147, 13jcad 519 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) ) )
1514eximdv 1612 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  z  e.  B  ->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) ) )
165, 15mpd 14 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) )
17 df-rex 2562 . . . . . . 7  |-  ( E. z  e.  RR  A. x  e.  A  x  <  z  <->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) )
1816, 17sylibr 203 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  x  <  z
)
19 axsup 8914 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. z  e.  RR  A. x  e.  A  x  <  z
)  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
201, 2, 18, 19syl3anc 1182 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
21 nfv 1609 . . . . . . . . . 10  |-  F/ x
( A  =/=  (/)  /\  B  =/=  (/) )
22 nfv 1609 . . . . . . . . . 10  |-  F/ x
( A  C_  RR  /\  B  C_  RR )
23 nfra1 2606 . . . . . . . . . 10  |-  F/ x A. x  e.  A  A. y  e.  B  x  <  y
2421, 22, 23nf3an 1786 . . . . . . . . 9  |-  F/ x
( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
25 nfv 1609 . . . . . . . . . 10  |-  F/ x  z  e.  RR
26 nfra1 2606 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  -.  z  <  x
27 nfra1 2606 . . . . . . . . . . 11  |-  F/ x A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )
2826, 27nfan 1783 . . . . . . . . . 10  |-  F/ x
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
2925, 28nfan 1783 . . . . . . . . 9  |-  F/ x
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3024, 29nfan 1783 . . . . . . . 8  |-  F/ x
( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
31 nfv 1609 . . . . . . . . . . 11  |-  F/ y ( A  =/=  (/)  /\  B  =/=  (/) )
32 nfv 1609 . . . . . . . . . . 11  |-  F/ y ( A  C_  RR  /\  B  C_  RR )
33 nfcv 2432 . . . . . . . . . . . 12  |-  F/_ y A
34 nfra1 2606 . . . . . . . . . . . 12  |-  F/ y A. y  e.  B  x  <  y
3533, 34nfral 2609 . . . . . . . . . . 11  |-  F/ y A. x  e.  A  A. y  e.  B  x  <  y
3631, 32, 35nf3an 1786 . . . . . . . . . 10  |-  F/ y ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
37 nfv 1609 . . . . . . . . . 10  |-  F/ y ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3836, 37nfan 1783 . . . . . . . . 9  |-  F/ y ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
39 nfv 1609 . . . . . . . . 9  |-  F/ y  x  e.  A
40 simprrl 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  -.  z  <  x )
4140r19.21bi 2654 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  -.  z  <  x )
42 simpl2l 1008 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A  C_  RR )
4342sselda 3193 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  e.  RR )
44 simplrl 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  z  e.  RR )
4543, 44lenltd 8981 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  (
x  <_  z  <->  -.  z  <  x ) )
4641, 45mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  <_  z )
4746ex 423 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  x  <_  z ) )
48 simpl3 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  A. y  e.  B  x  <  y )
49 simp2 956 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( A  C_  RR  /\  B  C_  RR ) )
50 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  y  e.  B )
51 rsp 2616 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  B  x  <  y  ->  ( y  e.  B  ->  x  < 
y ) )
5251com12 27 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  B  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
5352adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
54 ssel2 3188 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
5554adantlr 695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  x  e.  RR )
5655adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  x  e.  RR )
57 simplr 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  B  C_  RR )
5857sselda 3193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  y  e.  RR )
59 ltnsym 8935 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  ->  -.  y  <  x
) )
6056, 58, 59syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  <  y  ->  -.  y  <  x ) )
6153, 60syld 40 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6261an32s 779 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  /\  x  e.  A )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6362ralimdva 2634 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6449, 50, 63syl2an 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6548, 64mpd 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  -.  y  <  x )
66 breq2 4043 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
y  <  x  <->  y  <  w ) )
6766notbid 285 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  ( -.  y  <  x  <->  -.  y  <  w ) )
6867cbvralv 2777 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  -.  y  <  x  <->  A. w  e.  A  -.  y  <  w )
6965, 68sylib 188 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. w  e.  A  -.  y  <  w )
70 ralnex 2566 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  A  -.  y  <  w  <->  -.  E. w  e.  A  y  <  w )
7169, 70sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  E. w  e.  A  y  <  w )
72 ssel2 3188 . . . . . . . . . . . . . . . 16  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
736, 50, 72syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  y  e.  RR )
74 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w ) )
7574adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
76 breq1 4042 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
x  <  z  <->  y  <  z ) )
77 breq1 4042 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  <  w  <->  y  <  w ) )
7877rexbidv 2577 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( E. w  e.  A  x  <  w  <->  E. w  e.  A  y  <  w ) )
7976, 78imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( x  <  z  ->  E. w  e.  A  x  <  w )  <->  ( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
8079rspcv 2893 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )  -> 
( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
8173, 75, 80sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( y  <  z  ->  E. w  e.  A  y  <  w ) )
8271, 81mtod 168 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  y  <  z )
83 simprll 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  e.  RR )
8483, 73lenltd 8981 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( z  <_  y  <->  -.  y  <  z ) )
8582, 84mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  <_  y )
8685expr 598 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
y  e.  B  -> 
z  <_  y )
)
8747, 86anim12d 546 . . . . . . . . . 10  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  <_  z  /\  z  <_ 
y ) ) )
8887exp3a 425 . . . . . . . . 9  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  -> 
( y  e.  B  ->  ( x  <_  z  /\  z  <_  y ) ) ) )
8938, 39, 88ralrimd 2644 . . . . . . . 8  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  A. y  e.  B  ( x  <_  z  /\  z  <_  y ) ) )
9030, 89ralrimi 2637 . . . . . . 7  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) )
9190expr 598 . . . . . 6  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  z  e.  RR )  ->  (
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) ) )
9291reximdva 2668 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
9320, 92mpd 14 . . . 4  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
94933expib 1154 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y
)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
95 1re 8853 . . . . 5  |-  1  e.  RR
96 rzal 3568 . . . . 5  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
97 breq2 4043 . . . . . . . 8  |-  ( z  =  1  ->  (
x  <_  z  <->  x  <_  1 ) )
98 breq1 4042 . . . . . . . 8  |-  ( z  =  1  ->  (
z  <_  y  <->  1  <_  y ) )
9997, 98anbi12d 691 . . . . . . 7  |-  ( z  =  1  ->  (
( x  <_  z  /\  z  <_  y )  <-> 
( x  <_  1  /\  1  <_  y ) ) )
100992ralbidv 2598 . . . . . 6  |-  ( z  =  1  ->  ( A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_  y )  <->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) ) )
101100rspcev 2897 . . . . 5  |-  ( ( 1  e.  RR  /\  A. x  e.  A  A. y  e.  B  (
x  <_  1  /\  1  <_  y ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
10295, 96, 101sylancr 644 . . . 4  |-  ( A  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
103102a1d 22 . . 3  |-  ( A  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
104 rzal 3568 . . . . . 6  |-  ( B  =  (/)  ->  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
105104ralrimivw 2640 . . . . 5  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
10695, 105, 101sylancr 644 . . . 4  |-  ( B  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
107106a1d 22 . . 3  |-  ( B  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
10894, 103, 107pm2.61iine 24096 . 2  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
1091083impa 1146 1  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    C_ wss 3165   (/)c0 3468   class class class wbr 4039   RRcr 8752   1c1 8754    < clt 8883    <_ cle 8884
This theorem is referenced by:  dedekindle  24098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-mulcl 8815  ax-mulrcl 8816  ax-i2m1 8821  ax-1ne0 8822  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889
  Copyright terms: Public domain W3C validator