Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dedekindle Unicode version

Theorem dedekindle 24960
Description: The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.)
Assertion
Ref Expression
dedekindle  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem dedekindle
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpr1 963 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y ) )  ->  A  C_  RR )
2 simpr2 964 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y ) )  ->  B  C_  RR )
3 simp1 957 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  B
)  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  ->  ( A  i^i  B )  =  (/) )
4 simpl 444 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B )  ->  x  e.  A )
5 disjel 3610 . . . . . . . . . . . 12  |-  ( ( ( A  i^i  B
)  =  (/)  /\  x  e.  A )  ->  -.  x  e.  B )
63, 4, 5syl2an 464 . . . . . . . . . . 11  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  -.  x  e.  B )
7 eleq1 2440 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  (
y  e.  B  <->  x  e.  B ) )
87biimpcd 216 . . . . . . . . . . . . 13  |-  ( y  e.  B  ->  (
y  =  x  ->  x  e.  B )
)
98necon3bd 2580 . . . . . . . . . . . 12  |-  ( y  e.  B  ->  ( -.  x  e.  B  ->  y  =/=  x ) )
109ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( -.  x  e.  B  ->  y  =/=  x ) )
116, 10mpd 15 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  y  =/=  x )
12 simp2 958 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  ->  A  C_  RR )
13 ssel2 3279 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
1412, 4, 13syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  x  e.  RR )
15 simp3 959 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  ->  B  C_  RR )
16 simpr 448 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  B )  ->  y  e.  B )
17 ssel2 3279 . . . . . . . . . . . . 13  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
1815, 16, 17syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  y  e.  RR )
1914, 18ltlend 9143 . . . . . . . . . . 11  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( x  <  y  <->  ( x  <_ 
y  /\  y  =/=  x ) ) )
2019biimprd 215 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( (
x  <_  y  /\  y  =/=  x )  ->  x  <  y ) )
2111, 20mpan2d 656 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  (
x  e.  A  /\  y  e.  B )
)  ->  ( x  <_  y  ->  x  <  y ) )
2221anassrs 630 . . . . . . . 8  |-  ( ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  <_  y  ->  x  <  y ) )
2322ralimdva 2720 . . . . . . 7  |-  ( ( ( ( A  i^i  B )  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  /\  x  e.  A )  ->  ( A. y  e.  B  x  <_  y  ->  A. y  e.  B  x  <  y ) )
2423ralimdva 2720 . . . . . 6  |-  ( ( ( A  i^i  B
)  =  (/)  /\  A  C_  RR  /\  B  C_  RR )  ->  ( A. x  e.  A  A. y  e.  B  x  <_  y  ->  A. x  e.  A  A. y  e.  B  x  <  y ) )
25243exp 1152 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( A 
C_  RR  ->  ( B 
C_  RR  ->  ( A. x  e.  A  A. y  e.  B  x  <_  y  ->  A. x  e.  A  A. y  e.  B  x  <  y ) ) ) )
26253imp2 1168 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y ) )  ->  A. x  e.  A  A. y  e.  B  x  <  y )
27 dedekind 24959 . . . 4  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
281, 2, 26, 27syl3anc 1184 . . 3  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
2928ex 424 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
30 n0 3573 . . 3  |-  ( ( A  i^i  B )  =/=  (/)  <->  E. w  w  e.  ( A  i^i  B
) )
31 simp1 957 . . . . . . 7  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  A  C_  RR )
32 inss1 3497 . . . . . . . 8  |-  ( A  i^i  B )  C_  A
3332sseli 3280 . . . . . . 7  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  A )
34 ssel2 3279 . . . . . . 7  |-  ( ( A  C_  RR  /\  w  e.  A )  ->  w  e.  RR )
3531, 33, 34syl2an 464 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  w  e.  ( A  i^i  B
) )  ->  w  e.  RR )
36 nfv 1626 . . . . . . . . 9  |-  F/ x  A  C_  RR
37 nfv 1626 . . . . . . . . 9  |-  F/ x  B  C_  RR
38 nfra1 2692 . . . . . . . . 9  |-  F/ x A. x  e.  A  A. y  e.  B  x  <_  y
3936, 37, 38nf3an 1839 . . . . . . . 8  |-  F/ x
( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )
40 nfv 1626 . . . . . . . 8  |-  F/ x  w  e.  ( A  i^i  B )
4139, 40nfan 1836 . . . . . . 7  |-  F/ x
( ( A  C_  RR  /\  B  C_  RR  /\ 
A. x  e.  A  A. y  e.  B  x  <_  y )  /\  w  e.  ( A  i^i  B ) )
42 nfv 1626 . . . . . . . . . . 11  |-  F/ y  A  C_  RR
43 nfv 1626 . . . . . . . . . . 11  |-  F/ y  B  C_  RR
44 nfra2 2696 . . . . . . . . . . 11  |-  F/ y A. x  e.  A  A. y  e.  B  x  <_  y
4542, 43, 44nf3an 1839 . . . . . . . . . 10  |-  F/ y ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )
46 nfv 1626 . . . . . . . . . 10  |-  F/ y ( w  e.  ( A  i^i  B )  /\  x  e.  A
)
4745, 46nfan 1836 . . . . . . . . 9  |-  F/ y ( ( A  C_  RR  /\  B  C_  RR  /\ 
A. x  e.  A  A. y  e.  B  x  <_  y )  /\  ( w  e.  ( A  i^i  B )  /\  x  e.  A )
)
48 rsp 2702 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  A. y  e.  B  x  <_  y  ->  ( x  e.  A  ->  A. y  e.  B  x  <_  y ) )
49 inss2 3498 . . . . . . . . . . . . . . . . . 18  |-  ( A  i^i  B )  C_  B
5049sseli 3280 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  B )
51 breq2 4150 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  w  ->  (
x  <_  y  <->  x  <_  w ) )
5251rspccv 2985 . . . . . . . . . . . . . . . . 17  |-  ( A. y  e.  B  x  <_  y  ->  ( w  e.  B  ->  x  <_  w ) )
5350, 52syl5 30 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  B  x  <_  y  ->  ( w  e.  ( A  i^i  B
)  ->  x  <_  w ) )
5448, 53syl6 31 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  A  A. y  e.  B  x  <_  y  ->  ( x  e.  A  ->  ( w  e.  ( A  i^i  B )  ->  x  <_  w ) ) )
5554com23 74 . . . . . . . . . . . . . 14  |-  ( A. x  e.  A  A. y  e.  B  x  <_  y  ->  ( w  e.  ( A  i^i  B
)  ->  ( x  e.  A  ->  x  <_  w ) ) )
5655imp32 423 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  A  A. y  e.  B  x  <_  y  /\  (
w  e.  ( A  i^i  B )  /\  x  e.  A )
)  ->  x  <_  w )
57563ad2antl3 1121 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  (
w  e.  ( A  i^i  B )  /\  x  e.  A )
)  ->  x  <_  w )
5857adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR  /\ 
A. x  e.  A  A. y  e.  B  x  <_  y )  /\  ( w  e.  ( A  i^i  B )  /\  x  e.  A )
)  /\  y  e.  B )  ->  x  <_  w )
59 simp3 959 . . . . . . . . . . . . 13  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  A. x  e.  A  A. y  e.  B  x  <_  y )
6033adantr 452 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( A  i^i  B )  /\  x  e.  A )  ->  w  e.  A )
61 breq1 4149 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  (
x  <_  y  <->  w  <_  y ) )
6261ralbidv 2662 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( A. y  e.  B  x  <_  y  <->  A. y  e.  B  w  <_  y ) )
6362rspccva 2987 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  A  A. y  e.  B  x  <_  y  /\  w  e.  A )  ->  A. y  e.  B  w  <_  y )
6459, 60, 63syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  (
w  e.  ( A  i^i  B )  /\  x  e.  A )
)  ->  A. y  e.  B  w  <_  y )
6564r19.21bi 2740 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR  /\ 
A. x  e.  A  A. y  e.  B  x  <_  y )  /\  ( w  e.  ( A  i^i  B )  /\  x  e.  A )
)  /\  y  e.  B )  ->  w  <_  y )
6658, 65jca 519 . . . . . . . . . 10  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR  /\ 
A. x  e.  A  A. y  e.  B  x  <_  y )  /\  ( w  e.  ( A  i^i  B )  /\  x  e.  A )
)  /\  y  e.  B )  ->  (
x  <_  w  /\  w  <_  y ) )
6766ex 424 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  (
w  e.  ( A  i^i  B )  /\  x  e.  A )
)  ->  ( y  e.  B  ->  ( x  <_  w  /\  w  <_  y ) ) )
6847, 67ralrimi 2723 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  (
w  e.  ( A  i^i  B )  /\  x  e.  A )
)  ->  A. y  e.  B  ( x  <_  w  /\  w  <_ 
y ) )
6968expr 599 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  w  e.  ( A  i^i  B
) )  ->  (
x  e.  A  ->  A. y  e.  B  ( x  <_  w  /\  w  <_  y ) ) )
7041, 69ralrimi 2723 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  w  e.  ( A  i^i  B
) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  w  /\  w  <_ 
y ) )
71 breq2 4150 . . . . . . . . 9  |-  ( z  =  w  ->  (
x  <_  z  <->  x  <_  w ) )
72 breq1 4149 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  <_  y  <->  w  <_  y ) )
7371, 72anbi12d 692 . . . . . . . 8  |-  ( z  =  w  ->  (
( x  <_  z  /\  z  <_  y )  <-> 
( x  <_  w  /\  w  <_  y ) ) )
74732ralbidv 2684 . . . . . . 7  |-  ( z  =  w  ->  ( A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_  y )  <->  A. x  e.  A  A. y  e.  B  ( x  <_  w  /\  w  <_ 
y ) ) )
7574rspcev 2988 . . . . . 6  |-  ( ( w  e.  RR  /\  A. x  e.  A  A. y  e.  B  (
x  <_  w  /\  w  <_  y ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
7635, 70, 75syl2anc 643 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  /\  w  e.  ( A  i^i  B
) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
7776expcom 425 . . . 4  |-  ( w  e.  ( A  i^i  B )  ->  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
7877exlimiv 1641 . . 3  |-  ( E. w  w  e.  ( A  i^i  B )  ->  ( ( A 
C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y
)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
7930, 78sylbi 188 . 2  |-  ( ( A  i^i  B )  =/=  (/)  ->  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
8029, 79pm2.61ine 2619 1  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <_  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643    i^i cin 3255    C_ wss 3256   (/)c0 3564   class class class wbr 4146   RRcr 8915    < clt 9046    <_ cle 9047
This theorem is referenced by:  axcontlem10  25619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-mulcl 8978  ax-mulrcl 8979  ax-i2m1 8984  ax-1ne0 8985  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-po 4437  df-so 4438  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052
  Copyright terms: Public domain W3C validator