Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth3v Structured version   Unicode version

Theorem dedth3v 3787
 Description: Weak deduction theorem for eliminating a hypothesis with 3 class variables. See comments in dedth2v 3786. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth3v.1
dedth3v.2
dedth3v.3
dedth3v.4
Assertion
Ref Expression
dedth3v

Proof of Theorem dedth3v
StepHypRef Expression
1 dedth3v.1 . . . 4
2 dedth3v.2 . . . 4
3 dedth3v.3 . . . 4
4 dedth3v.4 . . . 4
51, 2, 3, 4dedth3h 3784 . . 3
653anidm12 1242 . 2
76anidms 628 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653  cif 3741 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-if 3742
 Copyright terms: Public domain W3C validator