Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth4v Structured version   Unicode version

Theorem dedth4v 3778
 Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v 3776. (Contributed by NM, 21-Apr-2007.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth4v.1
dedth4v.2
dedth4v.3
dedth4v.4
dedth4v.5
Assertion
Ref Expression
dedth4v

Proof of Theorem dedth4v
StepHypRef Expression
1 dedth4v.1 . . . 4
2 dedth4v.2 . . . 4
3 dedth4v.3 . . . 4
4 dedth4v.4 . . . 4
5 dedth4v.5 . . . 4
61, 2, 3, 4, 5dedth4h 3775 . . 3
76anidms 627 . 2
87anidms 627 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652  cif 3731 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-if 3732
 Copyright terms: Public domain W3C validator