MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1fval Unicode version

Theorem deg1fval 19482
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
deg1fval.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
deg1fval  |-  D  =  ( 1o mDeg  R )

Proof of Theorem deg1fval
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 deg1fval.d . 2  |-  D  =  ( deg1  `  R )
2 oveq2 5882 . . . 4  |-  ( r  =  R  ->  ( 1o mDeg  r )  =  ( 1o mDeg  R ) )
3 df-deg1 19458 . . . 4  |- deg1  =  (
r  e.  _V  |->  ( 1o mDeg  r ) )
4 ovex 5899 . . . 4  |-  ( 1o mDeg  R )  e.  _V
52, 3, 4fvmpt 5618 . . 3  |-  ( R  e.  _V  ->  ( deg1  `  R )  =  ( 1o mDeg  R ) )
6 fvprc 5535 . . . 4  |-  ( -.  R  e.  _V  ->  ( deg1  `  R )  =  (/) )
7 reldmmdeg 19459 . . . . 5  |-  Rel  dom mDeg
87ovprc2 5903 . . . 4  |-  ( -.  R  e.  _V  ->  ( 1o mDeg  R )  =  (/) )
96, 8eqtr4d 2331 . . 3  |-  ( -.  R  e.  _V  ->  ( deg1  `  R )  =  ( 1o mDeg  R ) )
105, 9pm2.61i 156 . 2  |-  ( deg1  `  R
)  =  ( 1o mDeg  R )
111, 10eqtri 2316 1  |-  D  =  ( 1o mDeg  R )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   ` cfv 5271  (class class class)co 5874   1oc1o 6488   mDeg cmdg 19455   deg1 cdg1 19456
This theorem is referenced by:  deg1xrf  19483  deg1cl  19485  deg1propd  19488  deg1z  19489  deg1nn0cl  19490  deg1ldg  19494  deg1leb  19497  deg1val  19498  deg1addle  19503  deg1vscale  19506  deg1vsca  19507  deg1mulle2  19511  deg1le0  19513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-mdeg 19457  df-deg1 19458
  Copyright terms: Public domain W3C validator