MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldgdomn Unicode version

Theorem deg1ldgdomn 19480
Description: A nonzero univariate polynomial over a domain always has a non-zero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d  |-  D  =  ( deg1  `  R )
deg1z.p  |-  P  =  (Poly1 `  R )
deg1z.z  |-  .0.  =  ( 0g `  P )
deg1nn0cl.b  |-  B  =  ( Base `  P
)
deg1ldgdomn.e  |-  E  =  (RLReg `  R )
deg1ldgdomn.a  |-  A  =  (coe1 `  F )
Assertion
Ref Expression
deg1ldgdomn  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  e.  E )

Proof of Theorem deg1ldgdomn
StepHypRef Expression
1 simp1 955 . 2  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  R  e. Domn )
2 deg1ldgdomn.a . . . . 5  |-  A  =  (coe1 `  F )
3 deg1nn0cl.b . . . . 5  |-  B  =  ( Base `  P
)
4 deg1z.p . . . . 5  |-  P  =  (Poly1 `  R )
5 eqid 2283 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
62, 3, 4, 5coe1f 16292 . . . 4  |-  ( F  e.  B  ->  A : NN0 --> ( Base `  R
) )
763ad2ant2 977 . . 3  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  A : NN0 --> ( Base `  R
) )
8 domnrng 16037 . . . 4  |-  ( R  e. Domn  ->  R  e.  Ring )
9 deg1z.d . . . . 5  |-  D  =  ( deg1  `  R )
10 deg1z.z . . . . 5  |-  .0.  =  ( 0g `  P )
119, 4, 10, 3deg1nn0cl 19474 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
128, 11syl3an1 1215 . . 3  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
13 ffvelrn 5663 . . 3  |-  ( ( A : NN0 --> ( Base `  R )  /\  ( D `  F )  e.  NN0 )  ->  ( A `  ( D `  F ) )  e.  ( Base `  R
) )
147, 12, 13syl2anc 642 . 2  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  e.  ( Base `  R
) )
15 eqid 2283 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
169, 4, 10, 3, 15, 2deg1ldg 19478 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/=  ( 0g `  R
) )
178, 16syl3an1 1215 . 2  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/=  ( 0g `  R
) )
18 deg1ldgdomn.e . . 3  |-  E  =  (RLReg `  R )
195, 18, 15domnrrg 16041 . 2  |-  ( ( R  e. Domn  /\  ( A `  ( D `  F ) )  e.  ( Base `  R
)  /\  ( A `  ( D `  F
) )  =/=  ( 0g `  R ) )  ->  ( A `  ( D `  F ) )  e.  E )
201, 14, 17, 19syl3anc 1182 1  |-  ( ( R  e. Domn  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   -->wf 5251   ` cfv 5255   NN0cn0 9965   Basecbs 13148   0gc0g 13400   Ringcrg 15337  RLRegcrlreg 16020  Domncdomn 16021  Poly1cpl1 16252  coe1cco1 16255   deg1 cdg1 19440
This theorem is referenced by:  ply1domn  19509  deg1mhm  27526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-gsum 13405  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-nzr 16010  df-rlreg 16024  df-domn 16025  df-psr 16098  df-mpl 16100  df-opsr 16106  df-psr1 16257  df-ply1 16259  df-coe1 16262  df-cnfld 16378  df-mdeg 19441  df-deg1 19442
  Copyright terms: Public domain W3C validator