![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > deg1nn0cl | Unicode version |
Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1z.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
deg1z.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
deg1z.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
deg1nn0cl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
deg1nn0cl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | deg1fval 19956 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eqid 2404 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | deg1z.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | deg1z.z |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | ply1mpl0 16604 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | eqid 2404 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | deg1nn0cl.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 4, 7, 8 | ply1bas 16548 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 2, 3, 6, 9 | mdegnn0cl 19947 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: deg1n0ima 19965 deg1nn0clb 19966 deg1lt0 19967 deg1ldg 19968 deg1ldgdomn 19970 coe1mul4 19976 deg1add 19979 deg1scl 19989 deg1mul2 19990 ply1domn 19999 ply1divmo 20011 ply1divex 20012 uc1pdeg 20023 deg1submon1p 20028 fta1glem1 20041 fta1g 20043 drnguc1p 20046 mon1psubm 27393 deg1mhm 27394 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2385 ax-rep 4280 ax-sep 4290 ax-nul 4298 ax-pow 4337 ax-pr 4363 ax-un 4660 ax-cnex 9002 ax-resscn 9003 ax-1cn 9004 ax-icn 9005 ax-addcl 9006 ax-addrcl 9007 ax-mulcl 9008 ax-mulrcl 9009 ax-mulcom 9010 ax-addass 9011 ax-mulass 9012 ax-distr 9013 ax-i2m1 9014 ax-1ne0 9015 ax-1rid 9016 ax-rnegex 9017 ax-rrecex 9018 ax-cnre 9019 ax-pre-lttri 9020 ax-pre-lttrn 9021 ax-pre-ltadd 9022 ax-pre-mulgt0 9023 ax-addf 9025 ax-mulf 9026 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2258 df-mo 2259 df-clab 2391 df-cleq 2397 df-clel 2400 df-nfc 2529 df-ne 2569 df-nel 2570 df-ral 2671 df-rex 2672 df-reu 2673 df-rmo 2674 df-rab 2675 df-v 2918 df-sbc 3122 df-csb 3212 df-dif 3283 df-un 3285 df-in 3287 df-ss 3294 df-pss 3296 df-nul 3589 df-if 3700 df-pw 3761 df-sn 3780 df-pr 3781 df-tp 3782 df-op 3783 df-uni 3976 df-int 4011 df-iun 4055 df-br 4173 df-opab 4227 df-mpt 4228 df-tr 4263 df-eprel 4454 df-id 4458 df-po 4463 df-so 4464 df-fr 4501 df-se 4502 df-we 4503 df-ord 4544 df-on 4545 df-lim 4546 df-suc 4547 df-om 4805 df-xp 4843 df-rel 4844 df-cnv 4845 df-co 4846 df-dm 4847 df-rn 4848 df-res 4849 df-ima 4850 df-iota 5377 df-fun 5415 df-fn 5416 df-f 5417 df-f1 5418 df-fo 5419 df-f1o 5420 df-fv 5421 df-isom 5422 df-ov 6043 df-oprab 6044 df-mpt2 6045 df-of 6264 df-1st 6308 df-2nd 6309 df-riota 6508 df-recs 6592 df-rdg 6627 df-1o 6683 df-oadd 6687 df-er 6864 df-map 6979 df-en 7069 df-dom 7070 df-sdom 7071 df-fin 7072 df-sup 7404 df-oi 7435 df-card 7782 df-pnf 9078 df-mnf 9079 df-xr 9080 df-ltxr 9081 df-le 9082 df-sub 9249 df-neg 9250 df-nn 9957 df-2 10014 df-3 10015 df-4 10016 df-5 10017 df-6 10018 df-7 10019 df-8 10020 df-9 10021 df-10 10022 df-n0 10178 df-z 10239 df-dec 10339 df-uz 10445 df-fz 11000 df-fzo 11091 df-seq 11279 df-hash 11574 df-struct 13426 df-ndx 13427 df-slot 13428 df-base 13429 df-sets 13430 df-ress 13431 df-plusg 13497 df-mulr 13498 df-starv 13499 df-sca 13500 df-vsca 13501 df-tset 13503 df-ple 13504 df-ds 13506 df-unif 13507 df-0g 13682 df-gsum 13683 df-mnd 14645 df-submnd 14694 df-grp 14767 df-minusg 14768 df-subg 14896 df-cntz 15071 df-cmn 15369 df-abl 15370 df-mgp 15604 df-rng 15618 df-cring 15619 df-ur 15620 df-psr 16372 df-mpl 16374 df-opsr 16380 df-psr1 16531 df-ply1 16533 df-cnfld 16659 df-mdeg 19931 df-deg1 19932 |
Copyright terms: Public domain | W3C validator |