MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  degltlem1 Unicode version

Theorem degltlem1 19458
Description: Theorem on arithmetic of extended reals useful for degrees. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
degltlem1  |-  ( ( X  e.  ( NN0 
u.  {  -oo } )  /\  Y  e.  ZZ )  ->  ( X  < 
Y  <->  X  <_  ( Y  -  1 ) ) )

Proof of Theorem degltlem1
StepHypRef Expression
1 elun 3316 . 2  |-  ( X  e.  ( NN0  u.  { 
-oo } )  <->  ( X  e.  NN0  \/  X  e. 
{  -oo } ) )
2 nn0z 10046 . . . 4  |-  ( X  e.  NN0  ->  X  e.  ZZ )
3 zltlem1 10070 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  <  Y  <->  X  <_  ( Y  - 
1 ) ) )
42, 3sylan 457 . . 3  |-  ( ( X  e.  NN0  /\  Y  e.  ZZ )  ->  ( X  <  Y  <->  X  <_  ( Y  - 
1 ) ) )
5 zre 10028 . . . . . . 7  |-  ( Y  e.  ZZ  ->  Y  e.  RR )
6 mnflt 10464 . . . . . . 7  |-  ( Y  e.  RR  ->  -oo  <  Y )
75, 6syl 15 . . . . . 6  |-  ( Y  e.  ZZ  ->  -oo  <  Y )
8 peano2zm 10062 . . . . . . . . 9  |-  ( Y  e.  ZZ  ->  ( Y  -  1 )  e.  ZZ )
98zred 10117 . . . . . . . 8  |-  ( Y  e.  ZZ  ->  ( Y  -  1 )  e.  RR )
109rexrd 8881 . . . . . . 7  |-  ( Y  e.  ZZ  ->  ( Y  -  1 )  e.  RR* )
11 mnfle 10470 . . . . . . 7  |-  ( ( Y  -  1 )  e.  RR*  ->  -oo  <_  ( Y  -  1 ) )
1210, 11syl 15 . . . . . 6  |-  ( Y  e.  ZZ  ->  -oo  <_  ( Y  -  1 ) )
137, 122thd 231 . . . . 5  |-  ( Y  e.  ZZ  ->  (  -oo  <  Y  <->  -oo  <_  ( Y  -  1 ) ) )
14 elsni 3664 . . . . . 6  |-  ( X  e.  {  -oo }  ->  X  =  -oo )
15 breq1 4026 . . . . . . 7  |-  ( X  =  -oo  ->  ( X  <  Y  <->  -oo  <  Y
) )
16 breq1 4026 . . . . . . 7  |-  ( X  =  -oo  ->  ( X  <_  ( Y  - 
1 )  <->  -oo  <_  ( Y  -  1 ) ) )
1715, 16bibi12d 312 . . . . . 6  |-  ( X  =  -oo  ->  (
( X  <  Y  <->  X  <_  ( Y  - 
1 ) )  <->  (  -oo  <  Y  <->  -oo  <_  ( Y  -  1 ) ) ) )
1814, 17syl 15 . . . . 5  |-  ( X  e.  {  -oo }  ->  ( ( X  < 
Y  <->  X  <_  ( Y  -  1 ) )  <-> 
(  -oo  <  Y  <->  -oo  <_  ( Y  -  1 ) ) ) )
1913, 18syl5ibrcom 213 . . . 4  |-  ( Y  e.  ZZ  ->  ( X  e.  {  -oo }  ->  ( X  <  Y  <->  X  <_  ( Y  - 
1 ) ) ) )
2019impcom 419 . . 3  |-  ( ( X  e.  {  -oo }  /\  Y  e.  ZZ )  ->  ( X  < 
Y  <->  X  <_  ( Y  -  1 ) ) )
214, 20jaoian 759 . 2  |-  ( ( ( X  e.  NN0  \/  X  e.  {  -oo } )  /\  Y  e.  ZZ )  ->  ( X  <  Y  <->  X  <_  ( Y  -  1 ) ) )
221, 21sylanb 458 1  |-  ( ( X  e.  ( NN0 
u.  {  -oo } )  /\  Y  e.  ZZ )  ->  ( X  < 
Y  <->  X  <_  ( Y  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    u. cun 3150   {csn 3640   class class class wbr 4023  (class class class)co 5858   RRcr 8736   1c1 8738    -oocmnf 8865   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   NN0cn0 9965   ZZcz 10024
This theorem is referenced by:  degltp1le  19459  ply1divex  19522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025
  Copyright terms: Public domain W3C validator