Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangenlem Unicode version

Theorem derangenlem 23702
Description: One half of derangen 23703. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangenlem  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y
Allowed substitution hints:    D( x, y, f)

Proof of Theorem derangenlem
Dummy variables  g  h  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  ~~  B )
2 bren 6871 . . . . 5  |-  ( A 
~~  B  <->  E. s 
s : A -1-1-onto-> B )
31, 2sylib 188 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  E. s  s : A -1-1-onto-> B )
4 deranglem 23697 . . . . 5  |-  ( B  e.  Fin  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )
54adantl 452 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) }  e.  Fin )
6 f1oco 5496 . . . . . . . . . . . 12  |-  ( ( s : A -1-1-onto-> B  /\  g : A -1-1-onto-> A )  ->  (
s  o.  g ) : A -1-1-onto-> B )
76ad2ant2lr 728 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
8 f1ocnv 5485 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  `' s : B -1-1-onto-> A )
98ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B -1-1-onto-> A )
10 f1oco 5496 . . . . . . . . . . 11  |-  ( ( ( s  o.  g
) : A -1-1-onto-> B  /\  `' s : B -1-1-onto-> A
)  ->  ( (
s  o.  g )  o.  `' s ) : B -1-1-onto-> B )
117, 9, 10syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B )
12 coass 5191 . . . . . . . . . . . . . . 15  |-  ( ( s  o.  g )  o.  `' s )  =  ( s  o.  ( g  o.  `' s ) )
1312fveq1i 5526 . . . . . . . . . . . . . 14  |-  ( ( ( s  o.  g
)  o.  `' s ) `  z )  =  ( ( s  o.  ( g  o.  `' s ) ) `
 z )
14 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  g : A -1-1-onto-> A )
15 f1oco 5496 . . . . . . . . . . . . . . . . 17  |-  ( ( g : A -1-1-onto-> A  /\  `' s : B -1-1-onto-> A
)  ->  ( g  o.  `' s ) : B -1-1-onto-> A )
1614, 9, 15syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B -1-1-onto-> A )
17 f1of 5472 . . . . . . . . . . . . . . . 16  |-  ( ( g  o.  `' s ) : B -1-1-onto-> A  -> 
( g  o.  `' s ) : B --> A )
1816, 17syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B --> A )
19 fvco3 5596 . . . . . . . . . . . . . . 15  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2018, 19sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2113, 20syl5eq 2327 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
22 f1of 5472 . . . . . . . . . . . . . . . . . 18  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B --> A )
239, 22syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B --> A )
24 fvco3 5596 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2523, 24sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
26 ffvelrn 5663 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
2723, 26sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
28 simplrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  A. y  e.  A  ( g `  y )  =/=  y
)
29 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
( g `  y
)  =  ( g `
 ( `' s `
 z ) ) )
30 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
y  =  ( `' s `  z ) )
3129, 30neeq12d 2461 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' s `
 z )  -> 
( ( g `  y )  =/=  y  <->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) ) )
3231rspcv 2880 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s `  z
)  e.  A  -> 
( A. y  e.  A  ( g `  y )  =/=  y  ->  ( g `  ( `' s `  z
) )  =/=  ( `' s `  z
) ) )
3327, 28, 32sylc 56 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) )
3425, 33eqnetrd 2464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =/=  ( `' s `
 z ) )
3534necomd 2529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  =/=  ( ( g  o.  `' s ) `  z ) )
36 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  s : A
-1-1-onto-> B )
37 ffvelrn 5663 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
3818, 37sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
39 f1ocnvfv 5794 . . . . . . . . . . . . . . . 16  |-  ( ( s : A -1-1-onto-> B  /\  ( ( g  o.  `' s ) `  z )  e.  A
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
4036, 38, 39syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
4140necon3d 2484 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( ( `' s `  z
)  =/=  ( ( g  o.  `' s ) `  z )  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z ) )
4235, 41mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z )
4321, 42eqnetrd 2464 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
4443ralrimiva 2626 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. z  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
45 fveq2 5525 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( ( s  o.  g )  o.  `' s ) `  z
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
46 id 19 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  z  =  y )
4745, 46neeq12d 2461 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( ( ( s  o.  g )  o.  `' s ) `  z )  =/=  z  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
4847cbvralv 2764 . . . . . . . . . . 11  |-  ( A. z  e.  B  (
( ( s  o.  g )  o.  `' s ) `  z
)  =/=  z  <->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4944, 48sylib 188 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
5011, 49jca 518 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y )  =/=  y
) )
5150ex 423 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  -> 
( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
52 vex 2791 . . . . . . . . 9  |-  g  e. 
_V
53 f1oeq1 5463 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f : A -1-1-onto-> A  <->  g : A
-1-1-onto-> A ) )
54 fveq1 5524 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  y )  =  ( g `  y ) )
5554neeq1d 2459 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  y
)  =/=  y  <->  ( g `  y )  =/=  y
) )
5655ralbidv 2563 . . . . . . . . . 10  |-  ( f  =  g  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( g `  y )  =/=  y
) )
5753, 56anbi12d 691 . . . . . . . . 9  |-  ( f  =  g  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y ) ) )
5852, 57elab 2914 . . . . . . . 8  |-  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )
59 vex 2791 . . . . . . . . . . 11  |-  s  e. 
_V
6059, 52coex 5216 . . . . . . . . . 10  |-  ( s  o.  g )  e. 
_V
6159cnvex 5209 . . . . . . . . . 10  |-  `' s  e.  _V
6260, 61coex 5216 . . . . . . . . 9  |-  ( ( s  o.  g )  o.  `' s )  e.  _V
63 f1oeq1 5463 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f : B -1-1-onto-> B  <->  ( ( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B ) )
64 fveq1 5524 . . . . . . . . . . . 12  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f `  y
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
6564neeq1d 2459 . . . . . . . . . . 11  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f `  y )  =/=  y  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6665ralbidv 2563 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( A. y  e.  B  ( f `  y )  =/=  y  <->  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6763, 66anbi12d 691 . . . . . . . . 9  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
)  <->  ( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
6862, 67elab 2914 . . . . . . . 8  |-  ( ( ( s  o.  g
)  o.  `' s )  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  <->  ( (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6951, 58, 683imtr4g 261 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ->  ( ( s  o.  g )  o.  `' s )  e. 
{ f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
70 vex 2791 . . . . . . . . . 10  |-  h  e. 
_V
71 f1oeq1 5463 . . . . . . . . . . 11  |-  ( f  =  h  ->  (
f : A -1-1-onto-> A  <->  h : A
-1-1-onto-> A ) )
72 fveq1 5524 . . . . . . . . . . . . 13  |-  ( f  =  h  ->  (
f `  y )  =  ( h `  y ) )
7372neeq1d 2459 . . . . . . . . . . . 12  |-  ( f  =  h  ->  (
( f `  y
)  =/=  y  <->  ( h `  y )  =/=  y
) )
7473ralbidv 2563 . . . . . . . . . . 11  |-  ( f  =  h  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( h `  y )  =/=  y
) )
7571, 74anbi12d 691 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )
7670, 75elab 2914 . . . . . . . . 9  |-  ( h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )
7758, 76anbi12i 678 . . . . . . . 8  |-  ( ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <->  ( ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
)  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) ) )
788ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -1-1-onto-> A )
79 f1ofo 5479 . . . . . . . . . . . 12  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B -onto-> A )
8078, 79syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -onto-> A )
817adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
82 f1ofn 5473 . . . . . . . . . . . 12  |-  ( ( s  o.  g ) : A -1-1-onto-> B  ->  ( s  o.  g )  Fn  A
)
8381, 82syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g )  Fn  A )
84 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-onto-> B )
85 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A -1-1-onto-> A )
86 f1oco 5496 . . . . . . . . . . . . 13  |-  ( ( s : A -1-1-onto-> B  /\  h : A -1-1-onto-> A )  ->  (
s  o.  h ) : A -1-1-onto-> B )
8784, 85, 86syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h ) : A -1-1-onto-> B )
88 f1ofn 5473 . . . . . . . . . . . 12  |-  ( ( s  o.  h ) : A -1-1-onto-> B  ->  ( s  o.  h )  Fn  A
)
8987, 88syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h )  Fn  A )
90 cocan2 5802 . . . . . . . . . . 11  |-  ( ( `' s : B -onto-> A  /\  ( s  o.  g )  Fn  A  /\  ( s  o.  h
)  Fn  A )  ->  ( ( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
9180, 83, 89, 90syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
92 f1of1 5471 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  s : A -1-1-> B )
9392ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-> B )
94 simprll 738 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A -1-1-onto-> A )
95 f1of 5472 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> A  ->  g : A
--> A )
9694, 95syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A --> A )
97 f1of 5472 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> A  ->  h : A
--> A )
9885, 97syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A --> A )
99 cocan1 5801 . . . . . . . . . . 11  |-  ( ( s : A -1-1-> B  /\  g : A --> A  /\  h : A --> A )  ->  ( ( s  o.  g )  =  ( s  o.  h
)  <->  g  =  h ) )
10093, 96, 98, 99syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( s  o.  g
)  =  ( s  o.  h )  <->  g  =  h ) )
10191, 100bitrd 244 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) )
102101ex 423 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) ) )
10377, 102syl5bi 208 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  ->  ( (
( s  o.  g
)  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <-> 
g  =  h ) ) )
10469, 103dom2d 6902 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
105104ex 423 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( s : A -1-1-onto-> B  ->  ( { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y
)  =/=  y ) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) ) )
106105exlimdv 1664 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( E. s  s : A -1-1-onto-> B  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) ) )
1073, 5, 106mp2d 41 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } )
108 enfii 7080 . . . . . 6  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
109108ancoms 439 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  e.  Fin )
110 deranglem 23697 . . . . 5  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  e.  Fin )
111109, 110syl 15 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin )
112 hashdom 11361 . . . 4  |-  ( ( { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin  /\  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )  ->  ( ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <_  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
113111, 5, 112syl2anc 642 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
114107, 113mpbird 223 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
115 derang.d . . . 4  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
116115derangval 23698 . . 3  |-  ( A  e.  Fin  ->  ( D `  A )  =  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } ) )
117109, 116syl 15 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  =  ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } ) )
118115derangval 23698 . . 3  |-  ( B  e.  Fin  ->  ( D `  B )  =  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
119118adantl 452 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  B
)  =  ( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
120114, 117, 1193brtr4d 4053 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688    o. ccom 4693    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255    ~~ cen 6860    ~<_ cdom 6861   Fincfn 6863    <_ cle 8868   #chash 11337
This theorem is referenced by:  derangen  23703
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338
  Copyright terms: Public domain W3C validator