Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangenlem Unicode version

Theorem derangenlem 23717
Description: One half of derangen 23718. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangenlem  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y
Allowed substitution hints:    D( x, y, f)

Proof of Theorem derangenlem
Dummy variables  g  h  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  ~~  B )
2 bren 6887 . . . . 5  |-  ( A 
~~  B  <->  E. s 
s : A -1-1-onto-> B )
31, 2sylib 188 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  E. s  s : A -1-1-onto-> B )
4 deranglem 23712 . . . . 5  |-  ( B  e.  Fin  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )
54adantl 452 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) }  e.  Fin )
6 f1oco 5512 . . . . . . . . . . . 12  |-  ( ( s : A -1-1-onto-> B  /\  g : A -1-1-onto-> A )  ->  (
s  o.  g ) : A -1-1-onto-> B )
76ad2ant2lr 728 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
8 f1ocnv 5501 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  `' s : B -1-1-onto-> A )
98ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B -1-1-onto-> A )
10 f1oco 5512 . . . . . . . . . . 11  |-  ( ( ( s  o.  g
) : A -1-1-onto-> B  /\  `' s : B -1-1-onto-> A
)  ->  ( (
s  o.  g )  o.  `' s ) : B -1-1-onto-> B )
117, 9, 10syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B )
12 coass 5207 . . . . . . . . . . . . . . 15  |-  ( ( s  o.  g )  o.  `' s )  =  ( s  o.  ( g  o.  `' s ) )
1312fveq1i 5542 . . . . . . . . . . . . . 14  |-  ( ( ( s  o.  g
)  o.  `' s ) `  z )  =  ( ( s  o.  ( g  o.  `' s ) ) `
 z )
14 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  g : A -1-1-onto-> A )
15 f1oco 5512 . . . . . . . . . . . . . . . . 17  |-  ( ( g : A -1-1-onto-> A  /\  `' s : B -1-1-onto-> A
)  ->  ( g  o.  `' s ) : B -1-1-onto-> A )
1614, 9, 15syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B -1-1-onto-> A )
17 f1of 5488 . . . . . . . . . . . . . . . 16  |-  ( ( g  o.  `' s ) : B -1-1-onto-> A  -> 
( g  o.  `' s ) : B --> A )
1816, 17syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B --> A )
19 fvco3 5612 . . . . . . . . . . . . . . 15  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2018, 19sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2113, 20syl5eq 2340 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
22 f1of 5488 . . . . . . . . . . . . . . . . . 18  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B --> A )
239, 22syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B --> A )
24 fvco3 5612 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2523, 24sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
26 ffvelrn 5679 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
2723, 26sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
28 simplrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  A. y  e.  A  ( g `  y )  =/=  y
)
29 fveq2 5541 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
( g `  y
)  =  ( g `
 ( `' s `
 z ) ) )
30 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
y  =  ( `' s `  z ) )
3129, 30neeq12d 2474 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' s `
 z )  -> 
( ( g `  y )  =/=  y  <->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) ) )
3231rspcv 2893 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s `  z
)  e.  A  -> 
( A. y  e.  A  ( g `  y )  =/=  y  ->  ( g `  ( `' s `  z
) )  =/=  ( `' s `  z
) ) )
3327, 28, 32sylc 56 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) )
3425, 33eqnetrd 2477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =/=  ( `' s `
 z ) )
3534necomd 2542 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  =/=  ( ( g  o.  `' s ) `  z ) )
36 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  s : A
-1-1-onto-> B )
37 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
3818, 37sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
39 f1ocnvfv 5810 . . . . . . . . . . . . . . . 16  |-  ( ( s : A -1-1-onto-> B  /\  ( ( g  o.  `' s ) `  z )  e.  A
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
4036, 38, 39syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
4140necon3d 2497 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( ( `' s `  z
)  =/=  ( ( g  o.  `' s ) `  z )  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z ) )
4235, 41mpd 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z )
4321, 42eqnetrd 2477 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
4443ralrimiva 2639 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. z  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
45 fveq2 5541 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( ( s  o.  g )  o.  `' s ) `  z
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
46 id 19 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  z  =  y )
4745, 46neeq12d 2474 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( ( ( s  o.  g )  o.  `' s ) `  z )  =/=  z  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
4847cbvralv 2777 . . . . . . . . . . 11  |-  ( A. z  e.  B  (
( ( s  o.  g )  o.  `' s ) `  z
)  =/=  z  <->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4944, 48sylib 188 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
5011, 49jca 518 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y )  =/=  y
) )
5150ex 423 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  -> 
( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
52 vex 2804 . . . . . . . . 9  |-  g  e. 
_V
53 f1oeq1 5479 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f : A -1-1-onto-> A  <->  g : A
-1-1-onto-> A ) )
54 fveq1 5540 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  y )  =  ( g `  y ) )
5554neeq1d 2472 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  y
)  =/=  y  <->  ( g `  y )  =/=  y
) )
5655ralbidv 2576 . . . . . . . . . 10  |-  ( f  =  g  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( g `  y )  =/=  y
) )
5753, 56anbi12d 691 . . . . . . . . 9  |-  ( f  =  g  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y ) ) )
5852, 57elab 2927 . . . . . . . 8  |-  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )
59 vex 2804 . . . . . . . . . . 11  |-  s  e. 
_V
6059, 52coex 5232 . . . . . . . . . 10  |-  ( s  o.  g )  e. 
_V
6159cnvex 5225 . . . . . . . . . 10  |-  `' s  e.  _V
6260, 61coex 5232 . . . . . . . . 9  |-  ( ( s  o.  g )  o.  `' s )  e.  _V
63 f1oeq1 5479 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f : B -1-1-onto-> B  <->  ( ( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B ) )
64 fveq1 5540 . . . . . . . . . . . 12  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f `  y
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
6564neeq1d 2472 . . . . . . . . . . 11  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f `  y )  =/=  y  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6665ralbidv 2576 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( A. y  e.  B  ( f `  y )  =/=  y  <->  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6763, 66anbi12d 691 . . . . . . . . 9  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
)  <->  ( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
6862, 67elab 2927 . . . . . . . 8  |-  ( ( ( s  o.  g
)  o.  `' s )  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  <->  ( (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6951, 58, 683imtr4g 261 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ->  ( ( s  o.  g )  o.  `' s )  e. 
{ f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
70 vex 2804 . . . . . . . . . 10  |-  h  e. 
_V
71 f1oeq1 5479 . . . . . . . . . . 11  |-  ( f  =  h  ->  (
f : A -1-1-onto-> A  <->  h : A
-1-1-onto-> A ) )
72 fveq1 5540 . . . . . . . . . . . . 13  |-  ( f  =  h  ->  (
f `  y )  =  ( h `  y ) )
7372neeq1d 2472 . . . . . . . . . . . 12  |-  ( f  =  h  ->  (
( f `  y
)  =/=  y  <->  ( h `  y )  =/=  y
) )
7473ralbidv 2576 . . . . . . . . . . 11  |-  ( f  =  h  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( h `  y )  =/=  y
) )
7571, 74anbi12d 691 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )
7670, 75elab 2927 . . . . . . . . 9  |-  ( h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )
7758, 76anbi12i 678 . . . . . . . 8  |-  ( ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <->  ( ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
)  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) ) )
788ad2antlr 707 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -1-1-onto-> A )
79 f1ofo 5495 . . . . . . . . . . . 12  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B -onto-> A )
8078, 79syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -onto-> A )
817adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
82 f1ofn 5489 . . . . . . . . . . . 12  |-  ( ( s  o.  g ) : A -1-1-onto-> B  ->  ( s  o.  g )  Fn  A
)
8381, 82syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g )  Fn  A )
84 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-onto-> B )
85 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A -1-1-onto-> A )
86 f1oco 5512 . . . . . . . . . . . . 13  |-  ( ( s : A -1-1-onto-> B  /\  h : A -1-1-onto-> A )  ->  (
s  o.  h ) : A -1-1-onto-> B )
8784, 85, 86syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h ) : A -1-1-onto-> B )
88 f1ofn 5489 . . . . . . . . . . . 12  |-  ( ( s  o.  h ) : A -1-1-onto-> B  ->  ( s  o.  h )  Fn  A
)
8987, 88syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h )  Fn  A )
90 cocan2 5818 . . . . . . . . . . 11  |-  ( ( `' s : B -onto-> A  /\  ( s  o.  g )  Fn  A  /\  ( s  o.  h
)  Fn  A )  ->  ( ( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
9180, 83, 89, 90syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
92 f1of1 5487 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  s : A -1-1-> B )
9392ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-> B )
94 simprll 738 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A -1-1-onto-> A )
95 f1of 5488 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> A  ->  g : A
--> A )
9694, 95syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A --> A )
97 f1of 5488 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> A  ->  h : A
--> A )
9885, 97syl 15 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A --> A )
99 cocan1 5817 . . . . . . . . . . 11  |-  ( ( s : A -1-1-> B  /\  g : A --> A  /\  h : A --> A )  ->  ( ( s  o.  g )  =  ( s  o.  h
)  <->  g  =  h ) )
10093, 96, 98, 99syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( s  o.  g
)  =  ( s  o.  h )  <->  g  =  h ) )
10191, 100bitrd 244 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) )
102101ex 423 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) ) )
10377, 102syl5bi 208 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  ->  ( (
( s  o.  g
)  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <-> 
g  =  h ) ) )
10469, 103dom2d 6918 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
105104ex 423 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( s : A -1-1-onto-> B  ->  ( { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y
)  =/=  y ) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) ) )
106105exlimdv 1626 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( E. s  s : A -1-1-onto-> B  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) ) )
1073, 5, 106mp2d 41 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } )
108 enfii 7096 . . . . . 6  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
109108ancoms 439 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  e.  Fin )
110 deranglem 23712 . . . . 5  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  e.  Fin )
111109, 110syl 15 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin )
112 hashdom 11377 . . . 4  |-  ( ( { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin  /\  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )  ->  ( ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <_  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
113111, 5, 112syl2anc 642 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
114107, 113mpbird 223 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
115 derang.d . . . 4  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
116115derangval 23713 . . 3  |-  ( A  e.  Fin  ->  ( D `  A )  =  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } ) )
117109, 116syl 15 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  =  ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } ) )
118115derangval 23713 . . 3  |-  ( B  e.  Fin  ->  ( D `  B )  =  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
119118adantl 452 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  B
)  =  ( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
120114, 117, 1193brtr4d 4069 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   class class class wbr 4039    e. cmpt 4093   `'ccnv 4704    o. ccom 4709    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877   Fincfn 6879    <_ cle 8884   #chash 11353
This theorem is referenced by:  derangen  23718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-hash 11354
  Copyright terms: Public domain W3C validator