Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangenlem Structured version   Unicode version

Theorem derangenlem 24862
Description: One half of derangen 24863. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangenlem  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y
Allowed substitution hints:    D( x, y, f)

Proof of Theorem derangenlem
Dummy variables  g  h  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 445 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  ~~  B )
2 bren 7120 . . . . 5  |-  ( A 
~~  B  <->  E. s 
s : A -1-1-onto-> B )
31, 2sylib 190 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  E. s  s : A -1-1-onto-> B )
4 deranglem 24857 . . . . 5  |-  ( B  e.  Fin  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )
54adantl 454 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) }  e.  Fin )
6 f1oco 5701 . . . . . . . . . . . 12  |-  ( ( s : A -1-1-onto-> B  /\  g : A -1-1-onto-> A )  ->  (
s  o.  g ) : A -1-1-onto-> B )
76ad2ant2lr 730 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
8 f1ocnv 5690 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  `' s : B -1-1-onto-> A )
98ad2antlr 709 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B -1-1-onto-> A )
10 f1oco 5701 . . . . . . . . . . 11  |-  ( ( ( s  o.  g
) : A -1-1-onto-> B  /\  `' s : B -1-1-onto-> A
)  ->  ( (
s  o.  g )  o.  `' s ) : B -1-1-onto-> B )
117, 9, 10syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B )
12 coass 5391 . . . . . . . . . . . . . . 15  |-  ( ( s  o.  g )  o.  `' s )  =  ( s  o.  ( g  o.  `' s ) )
1312fveq1i 5732 . . . . . . . . . . . . . 14  |-  ( ( ( s  o.  g
)  o.  `' s ) `  z )  =  ( ( s  o.  ( g  o.  `' s ) ) `
 z )
14 simprl 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  g : A -1-1-onto-> A )
15 f1oco 5701 . . . . . . . . . . . . . . . . 17  |-  ( ( g : A -1-1-onto-> A  /\  `' s : B -1-1-onto-> A
)  ->  ( g  o.  `' s ) : B -1-1-onto-> A )
1614, 9, 15syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B -1-1-onto-> A )
17 f1of 5677 . . . . . . . . . . . . . . . 16  |-  ( ( g  o.  `' s ) : B -1-1-onto-> A  -> 
( g  o.  `' s ) : B --> A )
1816, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B --> A )
19 fvco3 5803 . . . . . . . . . . . . . . 15  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2018, 19sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2113, 20syl5eq 2482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
22 f1of 5677 . . . . . . . . . . . . . . . . . 18  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B --> A )
239, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B --> A )
24 fvco3 5803 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2523, 24sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2623ffvelrnda 5873 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
27 simplrr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  A. y  e.  A  ( g `  y )  =/=  y
)
28 fveq2 5731 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
( g `  y
)  =  ( g `
 ( `' s `
 z ) ) )
29 id 21 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
y  =  ( `' s `  z ) )
3028, 29neeq12d 2618 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' s `
 z )  -> 
( ( g `  y )  =/=  y  <->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) ) )
3130rspcv 3050 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s `  z
)  e.  A  -> 
( A. y  e.  A  ( g `  y )  =/=  y  ->  ( g `  ( `' s `  z
) )  =/=  ( `' s `  z
) ) )
3226, 27, 31sylc 59 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) )
3325, 32eqnetrd 2621 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =/=  ( `' s `
 z ) )
3433necomd 2689 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  =/=  ( ( g  o.  `' s ) `  z ) )
35 simpllr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  s : A
-1-1-onto-> B )
3618ffvelrnda 5873 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
37 f1ocnvfv 6019 . . . . . . . . . . . . . . . 16  |-  ( ( s : A -1-1-onto-> B  /\  ( ( g  o.  `' s ) `  z )  e.  A
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
3835, 36, 37syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
3938necon3d 2641 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( ( `' s `  z
)  =/=  ( ( g  o.  `' s ) `  z )  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z ) )
4034, 39mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z )
4121, 40eqnetrd 2621 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
4241ralrimiva 2791 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. z  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
43 fveq2 5731 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( ( s  o.  g )  o.  `' s ) `  z
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
44 id 21 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  z  =  y )
4543, 44neeq12d 2618 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( ( ( s  o.  g )  o.  `' s ) `  z )  =/=  z  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
4645cbvralv 2934 . . . . . . . . . . 11  |-  ( A. z  e.  B  (
( ( s  o.  g )  o.  `' s ) `  z
)  =/=  z  <->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4742, 46sylib 190 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4811, 47jca 520 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y )  =/=  y
) )
4948ex 425 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  -> 
( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
50 vex 2961 . . . . . . . . 9  |-  g  e. 
_V
51 f1oeq1 5668 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f : A -1-1-onto-> A  <->  g : A
-1-1-onto-> A ) )
52 fveq1 5730 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  y )  =  ( g `  y ) )
5352neeq1d 2616 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  y
)  =/=  y  <->  ( g `  y )  =/=  y
) )
5453ralbidv 2727 . . . . . . . . . 10  |-  ( f  =  g  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( g `  y )  =/=  y
) )
5551, 54anbi12d 693 . . . . . . . . 9  |-  ( f  =  g  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y ) ) )
5650, 55elab 3084 . . . . . . . 8  |-  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )
57 vex 2961 . . . . . . . . . . 11  |-  s  e. 
_V
5857, 50coex 5416 . . . . . . . . . 10  |-  ( s  o.  g )  e. 
_V
5957cnvex 5409 . . . . . . . . . 10  |-  `' s  e.  _V
6058, 59coex 5416 . . . . . . . . 9  |-  ( ( s  o.  g )  o.  `' s )  e.  _V
61 f1oeq1 5668 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f : B -1-1-onto-> B  <->  ( ( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B ) )
62 fveq1 5730 . . . . . . . . . . . 12  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f `  y
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
6362neeq1d 2616 . . . . . . . . . . 11  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f `  y )  =/=  y  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6463ralbidv 2727 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( A. y  e.  B  ( f `  y )  =/=  y  <->  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6561, 64anbi12d 693 . . . . . . . . 9  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
)  <->  ( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
6660, 65elab 3084 . . . . . . . 8  |-  ( ( ( s  o.  g
)  o.  `' s )  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  <->  ( (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6749, 56, 663imtr4g 263 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ->  ( ( s  o.  g )  o.  `' s )  e. 
{ f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
68 vex 2961 . . . . . . . . . 10  |-  h  e. 
_V
69 f1oeq1 5668 . . . . . . . . . . 11  |-  ( f  =  h  ->  (
f : A -1-1-onto-> A  <->  h : A
-1-1-onto-> A ) )
70 fveq1 5730 . . . . . . . . . . . . 13  |-  ( f  =  h  ->  (
f `  y )  =  ( h `  y ) )
7170neeq1d 2616 . . . . . . . . . . . 12  |-  ( f  =  h  ->  (
( f `  y
)  =/=  y  <->  ( h `  y )  =/=  y
) )
7271ralbidv 2727 . . . . . . . . . . 11  |-  ( f  =  h  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( h `  y )  =/=  y
) )
7369, 72anbi12d 693 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )
7468, 73elab 3084 . . . . . . . . 9  |-  ( h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )
7556, 74anbi12i 680 . . . . . . . 8  |-  ( ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <->  ( ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
)  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) ) )
768ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -1-1-onto-> A )
77 f1ofo 5684 . . . . . . . . . . . 12  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B -onto-> A )
7876, 77syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -onto-> A )
797adantrr 699 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
80 f1ofn 5678 . . . . . . . . . . . 12  |-  ( ( s  o.  g ) : A -1-1-onto-> B  ->  ( s  o.  g )  Fn  A
)
8179, 80syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g )  Fn  A )
82 simplr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-onto-> B )
83 simprrl 742 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A -1-1-onto-> A )
84 f1oco 5701 . . . . . . . . . . . . 13  |-  ( ( s : A -1-1-onto-> B  /\  h : A -1-1-onto-> A )  ->  (
s  o.  h ) : A -1-1-onto-> B )
8582, 83, 84syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h ) : A -1-1-onto-> B )
86 f1ofn 5678 . . . . . . . . . . . 12  |-  ( ( s  o.  h ) : A -1-1-onto-> B  ->  ( s  o.  h )  Fn  A
)
8785, 86syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h )  Fn  A )
88 cocan2 6028 . . . . . . . . . . 11  |-  ( ( `' s : B -onto-> A  /\  ( s  o.  g )  Fn  A  /\  ( s  o.  h
)  Fn  A )  ->  ( ( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
8978, 81, 87, 88syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
90 f1of1 5676 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  s : A -1-1-> B )
9190ad2antlr 709 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-> B )
92 simprll 740 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A -1-1-onto-> A )
93 f1of 5677 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> A  ->  g : A
--> A )
9492, 93syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A --> A )
95 f1of 5677 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> A  ->  h : A
--> A )
9683, 95syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A --> A )
97 cocan1 6027 . . . . . . . . . . 11  |-  ( ( s : A -1-1-> B  /\  g : A --> A  /\  h : A --> A )  ->  ( ( s  o.  g )  =  ( s  o.  h
)  <->  g  =  h ) )
9891, 94, 96, 97syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( s  o.  g
)  =  ( s  o.  h )  <->  g  =  h ) )
9989, 98bitrd 246 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) )
10099ex 425 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) ) )
10175, 100syl5bi 210 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  ->  ( (
( s  o.  g
)  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <-> 
g  =  h ) ) )
10267, 101dom2d 7151 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
103102ex 425 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( s : A -1-1-onto-> B  ->  ( { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y
)  =/=  y ) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) ) )
104103exlimdv 1647 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( E. s  s : A -1-1-onto-> B  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) ) )
1053, 5, 104mp2d 44 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } )
106 enfii 7329 . . . . . 6  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
107106ancoms 441 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  e.  Fin )
108 deranglem 24857 . . . . 5  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  e.  Fin )
109107, 108syl 16 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin )
110 hashdom 11658 . . . 4  |-  ( ( { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin  /\  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )  ->  ( ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <_  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
111109, 5, 110syl2anc 644 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
112105, 111mpbird 225 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
113 derang.d . . . 4  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
114113derangval 24858 . . 3  |-  ( A  e.  Fin  ->  ( D `  A )  =  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } ) )
115107, 114syl 16 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  =  ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } ) )
116113derangval 24858 . . 3  |-  ( B  e.  Fin  ->  ( D `  B )  =  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
117116adantl 454 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  B
)  =  ( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
118112, 115, 1173brtr4d 4245 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   A.wral 2707   class class class wbr 4215    e. cmpt 4269   `'ccnv 4880    o. ccom 4885    Fn wfn 5452   -->wf 5453   -1-1->wf1 5454   -onto->wfo 5455   -1-1-onto->wf1o 5456   ` cfv 5457    ~~ cen 7109    ~<_ cdom 7110   Fincfn 7112    <_ cle 9126   #chash 11623
This theorem is referenced by:  derangen  24863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-hash 11624
  Copyright terms: Public domain W3C validator