![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > df-aa | Unicode version |
Description: Define the set of
algebraic numbers. An algebraic number is a root of a
nonzero polynomial over the integers. Here we construct it as the union
of all kernels (preimages of ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-aa |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caa 20192 |
. 2
![]() ![]() | |
2 | vf |
. . 3
![]() ![]() | |
3 | cz 10246 |
. . . . 5
![]() ![]() | |
4 | cply 20064 |
. . . . 5
![]() | |
5 | 3, 4 | cfv 5421 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
6 | c0p 19522 |
. . . . 5
![]() ![]() ![]() | |
7 | 6 | csn 3782 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
8 | 5, 7 | cdif 3285 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2 | cv 1648 |
. . . . 5
![]() ![]() |
10 | 9 | ccnv 4844 |
. . . 4
![]() ![]() ![]() |
11 | cc0 8954 |
. . . . 5
![]() ![]() | |
12 | 11 | csn 3782 |
. . . 4
![]() ![]() ![]() ![]() |
13 | 10, 12 | cima 4848 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 8, 13 | ciun 4061 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1649 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: elaa 20194 |
Copyright terms: Public domain | W3C validator |