MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cad Unicode version

Definition df-cad 1372
Description: Define the half adder carry, which is true when at least two arguments are true. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
df-cad  |-  (cadd (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( ch  /\  ( ph  \/_  ps ) ) ) )

Detailed syntax breakdown of Definition df-cad
StepHypRef Expression
1 wph . . 3  wff  ph
2 wps . . 3  wff  ps
3 wch . . 3  wff  ch
41, 2, 3wcad 1370 . 2  wff cadd ( ph ,  ps ,  ch )
51, 2wa 358 . . 3  wff  ( ph  /\ 
ps )
61, 2wxo 1295 . . . 4  wff  ( ph  \/_ 
ps )
73, 6wa 358 . . 3  wff  ( ch 
/\  ( ph  \/_  ps ) )
85, 7wo 357 . 2  wff  ( (
ph  /\  ps )  \/  ( ch  /\  ( ph  \/_  ps ) ) )
94, 8wb 176 1  wff  (cadd (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( ch  /\  ( ph  \/_  ps ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  cadbi123d  1374  cador  1382  cadcoma  1386  cad1  1389  cad11  1390  cad0  1391
  Copyright terms: Public domain W3C validator