MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cat Unicode version

Definition df-cat 13570
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated to those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-cat  |-  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Distinct variable group:    b, c, f, g, h, k, o, w, x, y, z

Detailed syntax breakdown of Definition df-cat
StepHypRef Expression
1 ccat 13566 . 2  class  Cat
2 vg . . . . . . . . . . . . . . 15  set  g
32cv 1622 . . . . . . . . . . . . . 14  class  g
4 vf . . . . . . . . . . . . . . 15  set  f
54cv 1622 . . . . . . . . . . . . . 14  class  f
6 vy . . . . . . . . . . . . . . . . 17  set  y
76cv 1622 . . . . . . . . . . . . . . . 16  class  y
8 vx . . . . . . . . . . . . . . . . 17  set  x
98cv 1622 . . . . . . . . . . . . . . . 16  class  x
107, 9cop 3643 . . . . . . . . . . . . . . 15  class  <. y ,  x >.
11 vo . . . . . . . . . . . . . . . 16  set  o
1211cv 1622 . . . . . . . . . . . . . . 15  class  o
1310, 9, 12co 5858 . . . . . . . . . . . . . 14  class  ( <.
y ,  x >. o x )
143, 5, 13co 5858 . . . . . . . . . . . . 13  class  ( g ( <. y ,  x >. o x ) f )
1514, 5wceq 1623 . . . . . . . . . . . 12  wff  ( g ( <. y ,  x >. o x ) f )  =  f
16 vh . . . . . . . . . . . . . 14  set  h
1716cv 1622 . . . . . . . . . . . . 13  class  h
187, 9, 17co 5858 . . . . . . . . . . . 12  class  ( y h x )
1915, 4, 18wral 2543 . . . . . . . . . . 11  wff  A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f
209, 9cop 3643 . . . . . . . . . . . . . . 15  class  <. x ,  x >.
2120, 7, 12co 5858 . . . . . . . . . . . . . 14  class  ( <.
x ,  x >. o y )
225, 3, 21co 5858 . . . . . . . . . . . . 13  class  ( f ( <. x ,  x >. o y ) g )
2322, 5wceq 1623 . . . . . . . . . . . 12  wff  ( f ( <. x ,  x >. o y ) g )  =  f
249, 7, 17co 5858 . . . . . . . . . . . 12  class  ( x h y )
2523, 4, 24wral 2543 . . . . . . . . . . 11  wff  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f
2619, 25wa 358 . . . . . . . . . 10  wff  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
27 vb . . . . . . . . . . 11  set  b
2827cv 1622 . . . . . . . . . 10  class  b
2926, 6, 28wral 2543 . . . . . . . . 9  wff  A. y  e.  b  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
309, 9, 17co 5858 . . . . . . . . 9  class  ( x h x )
3129, 2, 30wrex 2544 . . . . . . . 8  wff  E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )
329, 7cop 3643 . . . . . . . . . . . . . . . 16  class  <. x ,  y >.
33 vz . . . . . . . . . . . . . . . . 17  set  z
3433cv 1622 . . . . . . . . . . . . . . . 16  class  z
3532, 34, 12co 5858 . . . . . . . . . . . . . . 15  class  ( <.
x ,  y >.
o z )
363, 5, 35co 5858 . . . . . . . . . . . . . 14  class  ( g ( <. x ,  y
>. o z ) f )
379, 34, 17co 5858 . . . . . . . . . . . . . 14  class  ( x h z )
3836, 37wcel 1684 . . . . . . . . . . . . 13  wff  ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )
39 vk . . . . . . . . . . . . . . . . . . 19  set  k
4039cv 1622 . . . . . . . . . . . . . . . . . 18  class  k
417, 34cop 3643 . . . . . . . . . . . . . . . . . . 19  class  <. y ,  z >.
42 vw . . . . . . . . . . . . . . . . . . . 20  set  w
4342cv 1622 . . . . . . . . . . . . . . . . . . 19  class  w
4441, 43, 12co 5858 . . . . . . . . . . . . . . . . . 18  class  ( <.
y ,  z >.
o w )
4540, 3, 44co 5858 . . . . . . . . . . . . . . . . 17  class  ( k ( <. y ,  z
>. o w ) g )
4632, 43, 12co 5858 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  y >.
o w )
4745, 5, 46co 5858 . . . . . . . . . . . . . . . 16  class  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )
489, 34cop 3643 . . . . . . . . . . . . . . . . . 18  class  <. x ,  z >.
4948, 43, 12co 5858 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  z >.
o w )
5040, 36, 49co 5858 . . . . . . . . . . . . . . . 16  class  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5147, 50wceq 1623 . . . . . . . . . . . . . . 15  wff  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )  =  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5234, 43, 17co 5858 . . . . . . . . . . . . . . 15  class  ( z h w )
5351, 39, 52wral 2543 . . . . . . . . . . . . . 14  wff  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5453, 42, 28wral 2543 . . . . . . . . . . . . 13  wff  A. w  e.  b  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5538, 54wa 358 . . . . . . . . . . . 12  wff  ( ( g ( <. x ,  y >. o
z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
567, 34, 17co 5858 . . . . . . . . . . . 12  class  ( y h z )
5755, 2, 56wral 2543 . . . . . . . . . . 11  wff  A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5857, 4, 24wral 2543 . . . . . . . . . 10  wff  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5958, 33, 28wral 2543 . . . . . . . . 9  wff  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6059, 6, 28wral 2543 . . . . . . . 8  wff  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6131, 60wa 358 . . . . . . 7  wff  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
6261, 8, 28wral 2543 . . . . . 6  wff  A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
63 vc . . . . . . . 8  set  c
6463cv 1622 . . . . . . 7  class  c
65 cco 13220 . . . . . . 7  class comp
6664, 65cfv 5255 . . . . . 6  class  (comp `  c )
6762, 11, 66wsbc 2991 . . . . 5  wff  [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
68 chom 13219 . . . . . 6  class  Hom
6964, 68cfv 5255 . . . . 5  class  (  Hom  `  c )
7067, 16, 69wsbc 2991 . . . 4  wff  [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
71 cbs 13148 . . . . 5  class  Base
7264, 71cfv 5255 . . . 4  class  ( Base `  c )
7370, 27, 72wsbc 2991 . . 3  wff  [. ( Base `  c )  / 
b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c
)  /  o ]. A. x  e.  b 
( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
7473, 63cab 2269 . 2  class  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c
)  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
751, 74wceq 1623 1  wff  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  iscat  13574
  Copyright terms: Public domain W3C validator