MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cat Unicode version

Definition df-cat 13586
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated to those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-cat  |-  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Distinct variable group:    b, c, f, g, h, k, o, w, x, y, z

Detailed syntax breakdown of Definition df-cat
StepHypRef Expression
1 ccat 13582 . 2  class  Cat
2 vg . . . . . . . . . . . . . . 15  set  g
32cv 1631 . . . . . . . . . . . . . 14  class  g
4 vf . . . . . . . . . . . . . . 15  set  f
54cv 1631 . . . . . . . . . . . . . 14  class  f
6 vy . . . . . . . . . . . . . . . . 17  set  y
76cv 1631 . . . . . . . . . . . . . . . 16  class  y
8 vx . . . . . . . . . . . . . . . . 17  set  x
98cv 1631 . . . . . . . . . . . . . . . 16  class  x
107, 9cop 3656 . . . . . . . . . . . . . . 15  class  <. y ,  x >.
11 vo . . . . . . . . . . . . . . . 16  set  o
1211cv 1631 . . . . . . . . . . . . . . 15  class  o
1310, 9, 12co 5874 . . . . . . . . . . . . . 14  class  ( <.
y ,  x >. o x )
143, 5, 13co 5874 . . . . . . . . . . . . 13  class  ( g ( <. y ,  x >. o x ) f )
1514, 5wceq 1632 . . . . . . . . . . . 12  wff  ( g ( <. y ,  x >. o x ) f )  =  f
16 vh . . . . . . . . . . . . . 14  set  h
1716cv 1631 . . . . . . . . . . . . 13  class  h
187, 9, 17co 5874 . . . . . . . . . . . 12  class  ( y h x )
1915, 4, 18wral 2556 . . . . . . . . . . 11  wff  A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f
209, 9cop 3656 . . . . . . . . . . . . . . 15  class  <. x ,  x >.
2120, 7, 12co 5874 . . . . . . . . . . . . . 14  class  ( <.
x ,  x >. o y )
225, 3, 21co 5874 . . . . . . . . . . . . 13  class  ( f ( <. x ,  x >. o y ) g )
2322, 5wceq 1632 . . . . . . . . . . . 12  wff  ( f ( <. x ,  x >. o y ) g )  =  f
249, 7, 17co 5874 . . . . . . . . . . . 12  class  ( x h y )
2523, 4, 24wral 2556 . . . . . . . . . . 11  wff  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f
2619, 25wa 358 . . . . . . . . . 10  wff  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
27 vb . . . . . . . . . . 11  set  b
2827cv 1631 . . . . . . . . . 10  class  b
2926, 6, 28wral 2556 . . . . . . . . 9  wff  A. y  e.  b  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
309, 9, 17co 5874 . . . . . . . . 9  class  ( x h x )
3129, 2, 30wrex 2557 . . . . . . . 8  wff  E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )
329, 7cop 3656 . . . . . . . . . . . . . . . 16  class  <. x ,  y >.
33 vz . . . . . . . . . . . . . . . . 17  set  z
3433cv 1631 . . . . . . . . . . . . . . . 16  class  z
3532, 34, 12co 5874 . . . . . . . . . . . . . . 15  class  ( <.
x ,  y >.
o z )
363, 5, 35co 5874 . . . . . . . . . . . . . 14  class  ( g ( <. x ,  y
>. o z ) f )
379, 34, 17co 5874 . . . . . . . . . . . . . 14  class  ( x h z )
3836, 37wcel 1696 . . . . . . . . . . . . 13  wff  ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )
39 vk . . . . . . . . . . . . . . . . . . 19  set  k
4039cv 1631 . . . . . . . . . . . . . . . . . 18  class  k
417, 34cop 3656 . . . . . . . . . . . . . . . . . . 19  class  <. y ,  z >.
42 vw . . . . . . . . . . . . . . . . . . . 20  set  w
4342cv 1631 . . . . . . . . . . . . . . . . . . 19  class  w
4441, 43, 12co 5874 . . . . . . . . . . . . . . . . . 18  class  ( <.
y ,  z >.
o w )
4540, 3, 44co 5874 . . . . . . . . . . . . . . . . 17  class  ( k ( <. y ,  z
>. o w ) g )
4632, 43, 12co 5874 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  y >.
o w )
4745, 5, 46co 5874 . . . . . . . . . . . . . . . 16  class  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )
489, 34cop 3656 . . . . . . . . . . . . . . . . . 18  class  <. x ,  z >.
4948, 43, 12co 5874 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  z >.
o w )
5040, 36, 49co 5874 . . . . . . . . . . . . . . . 16  class  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5147, 50wceq 1632 . . . . . . . . . . . . . . 15  wff  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )  =  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5234, 43, 17co 5874 . . . . . . . . . . . . . . 15  class  ( z h w )
5351, 39, 52wral 2556 . . . . . . . . . . . . . 14  wff  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5453, 42, 28wral 2556 . . . . . . . . . . . . 13  wff  A. w  e.  b  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5538, 54wa 358 . . . . . . . . . . . 12  wff  ( ( g ( <. x ,  y >. o
z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
567, 34, 17co 5874 . . . . . . . . . . . 12  class  ( y h z )
5755, 2, 56wral 2556 . . . . . . . . . . 11  wff  A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5857, 4, 24wral 2556 . . . . . . . . . 10  wff  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5958, 33, 28wral 2556 . . . . . . . . 9  wff  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6059, 6, 28wral 2556 . . . . . . . 8  wff  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6131, 60wa 358 . . . . . . 7  wff  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
6261, 8, 28wral 2556 . . . . . 6  wff  A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
63 vc . . . . . . . 8  set  c
6463cv 1631 . . . . . . 7  class  c
65 cco 13236 . . . . . . 7  class comp
6664, 65cfv 5271 . . . . . 6  class  (comp `  c )
6762, 11, 66wsbc 3004 . . . . 5  wff  [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
68 chom 13235 . . . . . 6  class  Hom
6964, 68cfv 5271 . . . . 5  class  (  Hom  `  c )
7067, 16, 69wsbc 3004 . . . 4  wff  [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
71 cbs 13164 . . . . 5  class  Base
7264, 71cfv 5271 . . . 4  class  ( Base `  c )
7370, 27, 72wsbc 3004 . . 3  wff  [. ( Base `  c )  / 
b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c
)  /  o ]. A. x  e.  b 
( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
7473, 63cab 2282 . 2  class  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c
)  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
751, 74wceq 1632 1  wff  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. (  Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  iscat  13590
  Copyright terms: Public domain W3C validator