HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Unicode version

Definition df-ch0 22755
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 22757 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0  |-  0H  =  { 0h }

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 22438 . 2  class  0H
2 c0v 22427 . . 3  class  0h
32csn 3814 . 2  class  { 0h }
41, 3wceq 1652 1  wff  0H  =  { 0h }
Colors of variables: wff set class
This definition is referenced by:  elch0  22756  h0elch  22757  sh0le  22942  spansn0  23043  df0op2  23255  ho01i  23331  hh0oi  23406  nmop0h  23494
  Copyright terms: Public domain W3C validator