MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-chp Unicode version

Definition df-chp 20352
Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than  x. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
df-chp  |- ψ  =  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n ) )
Distinct variable group:    x, n

Detailed syntax breakdown of Definition df-chp
StepHypRef Expression
1 cchp 20346 . 2  class ψ
2 vx . . 3  set  x
3 cr 8752 . . 3  class  RR
4 c1 8754 . . . . 5  class  1
52cv 1631 . . . . . 6  class  x
6 cfl 10940 . . . . . 6  class  |_
75, 6cfv 5271 . . . . 5  class  ( |_
`  x )
8 cfz 10798 . . . . 5  class  ...
94, 7, 8co 5874 . . . 4  class  ( 1 ... ( |_ `  x ) )
10 vn . . . . . 6  set  n
1110cv 1631 . . . . 5  class  n
12 cvma 20345 . . . . 5  class Λ
1311, 12cfv 5271 . . . 4  class  (Λ `  n
)
149, 13, 10csu 12174 . . 3  class  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )
152, 3, 14cmpt 4093 . 2  class  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n )
)
161, 15wceq 1632 1  wff ψ  =  ( x  e.  RR  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) (Λ `  n ) )
Colors of variables: wff set class
This definition is referenced by:  chpval  20376  chpf  20377
  Copyright terms: Public domain W3C validator