Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-clim Structured version   Unicode version

Definition df-clim 12282
 Description: Define the limit relation for complex number sequences. See clim 12288 for its relational expression. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
df-clim
Distinct variable group:   ,,,,

Detailed syntax breakdown of Definition df-clim
StepHypRef Expression
1 cli 12278 . 2
2 vy . . . . . 6
32cv 1651 . . . . 5
4 cc 8988 . . . . 5
53, 4wcel 1725 . . . 4
6 vk . . . . . . . . . . 11
76cv 1651 . . . . . . . . . 10
8 vf . . . . . . . . . . 11
98cv 1651 . . . . . . . . . 10
107, 9cfv 5454 . . . . . . . . 9
1110, 4wcel 1725 . . . . . . . 8
12 cmin 9291 . . . . . . . . . . 11
1310, 3, 12co 6081 . . . . . . . . . 10
14 cabs 12039 . . . . . . . . . 10
1513, 14cfv 5454 . . . . . . . . 9
16 vx . . . . . . . . . 10
1716cv 1651 . . . . . . . . 9
18 clt 9120 . . . . . . . . 9
1915, 17, 18wbr 4212 . . . . . . . 8
2011, 19wa 359 . . . . . . 7
21 vj . . . . . . . . 9
2221cv 1651 . . . . . . . 8
23 cuz 10488 . . . . . . . 8
2422, 23cfv 5454 . . . . . . 7
2520, 6, 24wral 2705 . . . . . 6
26 cz 10282 . . . . . 6
2725, 21, 26wrex 2706 . . . . 5
28 crp 10612 . . . . 5
2927, 16, 28wral 2705 . . . 4
305, 29wa 359 . . 3
3130, 8, 2copab 4265 . 2
321, 31wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  climrel  12286  clim  12288
 Copyright terms: Public domain W3C validator