MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-co Structured version   Unicode version

Definition df-co 4890
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. For example,  ( ( exp 
o.  cos ) `  0
)  =  _e (ex-co 21751) because  ( cos `  0 )  =  1 (see cos0 12756) and  ( exp `  1
)  =  _e (see df-e 12676). Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses  /. instead of  o., and calls the operation "relative product." (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co  |-  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Distinct variable groups:    x, y,
z, A    x, B, y, z

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2ccom 4885 . 2  class  ( A  o.  B )
4 vx . . . . . . 7  set  x
54cv 1652 . . . . . 6  class  x
6 vz . . . . . . 7  set  z
76cv 1652 . . . . . 6  class  z
85, 7, 2wbr 4215 . . . . 5  wff  x B z
9 vy . . . . . . 7  set  y
109cv 1652 . . . . . 6  class  y
117, 10, 1wbr 4215 . . . . 5  wff  z A y
128, 11wa 360 . . . 4  wff  ( x B z  /\  z A y )
1312, 6wex 1551 . . 3  wff  E. z
( x B z  /\  z A y )
1413, 4, 9copab 4268 . 2  class  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
153, 14wceq 1653 1  wff  ( A  o.  B )  =  { <. x ,  y
>.  |  E. z
( x B z  /\  z A y ) }
Colors of variables: wff set class
This definition is referenced by:  coss1  5031  coss2  5032  nfco  5041  brcog  5042  cnvco  5059  cotr  5249  relco  5371  coundi  5374  coundir  5375  cores  5376  xpco  5417  dffun2  5467  funco  5494  xpcomco  7201  rtrclreclem.trans  25151
  Copyright terms: Public domain W3C validator