MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fld Unicode version

Definition df-fld 21097
Description: Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.)
Assertion
Ref Expression
df-fld  |-  Fld  =  (
DivRingOps 
i^i  Com2 )

Detailed syntax breakdown of Definition df-fld
StepHypRef Expression
1 cfld 21096 . 2  class  Fld
2 cdrng 21088 . . 3  class  DivRingOps
3 ccm2 21093 . . 3  class  Com2
42, 3cin 3164 . 2  class  ( DivRingOps  i^i  Com2 )
51, 4wceq 1632 1  wff  Fld  =  (
DivRingOps 
i^i  Com2 )
Colors of variables: wff set class
This definition is referenced by:  flddivrng  21098  isfldOLD  25529  fldi  25530  fldcrng  26732  isfld2  26733
  Copyright terms: Public domain W3C validator