Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ginv Structured version   Unicode version

Definition df-ginv 21781
 Description: Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-ginv GId
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-ginv
StepHypRef Expression
1 cgn 21776 . 2
2 vg . . 3
3 cgr 21774 . . 3
4 vx . . . 4
52cv 1651 . . . . 5
65crn 4879 . . . 4
7 vz . . . . . . . 8
87cv 1651 . . . . . . 7
94cv 1651 . . . . . . 7
108, 9, 5co 6081 . . . . . 6
11 cgi 21775 . . . . . . 7 GId
125, 11cfv 5454 . . . . . 6 GId
1310, 12wceq 1652 . . . . 5 GId
1413, 7, 6crio 6542 . . . 4 GId
154, 6, 14cmpt 4266 . . 3 GId
162, 3, 15cmpt 4266 . 2 GId
171, 16wceq 1652 1 GId
 Colors of variables: wff set class This definition is referenced by:  grpoinvfval  21812
 Copyright terms: Public domain W3C validator