Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-igen Unicode version

Definition df-igen 26097
Description: Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
df-igen  |-  IdlGen  =  ( r  e.  RingOps ,  s  e.  ~P ran  ( 1st `  r )  |->  |^|
{ j  e.  ( Idl `  r )  |  s  C_  j } )
Distinct variable group:    s, r, j

Detailed syntax breakdown of Definition df-igen
StepHypRef Expression
1 cigen 26096 . 2  class  IdlGen
2 vr . . 3  set  r
3 vs . . 3  set  s
4 crngo 21042 . . 3  class  RingOps
52cv 1622 . . . . . 6  class  r
6 c1st 6120 . . . . . 6  class  1st
75, 6cfv 5255 . . . . 5  class  ( 1st `  r )
87crn 4690 . . . 4  class  ran  ( 1st `  r )
98cpw 3625 . . 3  class  ~P ran  ( 1st `  r )
103cv 1622 . . . . . 6  class  s
11 vj . . . . . . 7  set  j
1211cv 1622 . . . . . 6  class  j
1310, 12wss 3152 . . . . 5  wff  s  C_  j
14 cidl 26044 . . . . . 6  class  Idl
155, 14cfv 5255 . . . . 5  class  ( Idl `  r )
1613, 11, 15crab 2547 . . . 4  class  { j  e.  ( Idl `  r
)  |  s  C_  j }
1716cint 3862 . . 3  class  |^| { j  e.  ( Idl `  r
)  |  s  C_  j }
182, 3, 4, 9, 17cmpt2 5860 . 2  class  ( r  e.  RingOps ,  s  e. 
~P ran  ( 1st `  r )  |->  |^| { j  e.  ( Idl `  r
)  |  s  C_  j } )
191, 18wceq 1623 1  wff  IdlGen  =  ( r  e.  RingOps ,  s  e.  ~P ran  ( 1st `  r )  |->  |^|
{ j  e.  ( Idl `  r )  |  s  C_  j } )
Colors of variables: wff set class
This definition is referenced by:  igenval  26098
  Copyright terms: Public domain W3C validator