MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Unicode version

Definition df-iin 3908
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3907. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3938. Theorem intiin 3956 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin  |-  |^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
Distinct variable groups:    x, y    y, A    y, B
Allowed substitution hints:    A( x)    B( x)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3  set  x
2 cA . . 3  class  A
3 cB . . 3  class  B
41, 2, 3ciin 3906 . 2  class  |^|_ x  e.  A  B
5 vy . . . . . 6  set  y
65cv 1622 . . . . 5  class  y
76, 3wcel 1684 . . . 4  wff  y  e.  B
87, 1, 2wral 2543 . . 3  wff  A. x  e.  A  y  e.  B
98, 5cab 2269 . 2  class  { y  |  A. x  e.  A  y  e.  B }
104, 9wceq 1623 1  wff  |^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
Colors of variables: wff set class
This definition is referenced by:  eliin  3910  iineq1  3919  iineq2  3922  nfiin  3932  nfii1  3934  dfiin2g  3936  cbviin  3940  intiin  3956  0iin  3960  viin  3961  iinxsng  3978  iinxprg  3979  iinuni  3985
  Copyright terms: Public domain W3C validator