Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ler Unicode version

Definition df-ler 25249
Description: Define the least element of a poset. I.e. the element of the poset that is smaller than the other elements. Meaningful is  r is at least a poset. Experimental. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
df-ler  |- leR  =  ( r  e.  _V  |->  ( r  inf w  dom  r ) )

Detailed syntax breakdown of Definition df-ler
StepHypRef Expression
1 cse 25221 . 2  class leR
2 vr . . 3  set  r
3 cvv 2788 . . 3  class  _V
42cv 1622 . . . 4  class  r
54cdm 4689 . . . 4  class  dom  r
6 cinf 14304 . . . 4  class  inf w
74, 5, 6co 5858 . . 3  class  ( r  inf w  dom  r
)
82, 3, 7cmpt 4077 . 2  class  ( r  e.  _V  |->  ( r  inf w  dom  r
) )
91, 8wceq 1623 1  wff leR  =  ( r  e.  _V  |->  ( r  inf w  dom  r ) )
Colors of variables: wff set class
This definition is referenced by:  seinf  25251
  Copyright terms: Public domain W3C validator