Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lm Structured version   Unicode version

Definition df-lm 17298
 Description: Define a function on topologies whose value is the convergence relation for the space. Although is typically a function from upper integers to the topological space, it doesn't have to be. Unfortunately, the value of the function must exist to use fvmpt 5809, and we use the otherwise unnecessary conjunct to ensure that. (Contributed by NM, 7-Sep-2006.)
Assertion
Ref Expression
df-lm
Distinct variable group:   ,,,,

Detailed syntax breakdown of Definition df-lm
StepHypRef Expression
1 clm 17295 . 2
2 vj . . 3
3 ctop 16963 . . 3
4 vf . . . . . . 7
54cv 1652 . . . . . 6
62cv 1652 . . . . . . . 8
76cuni 4017 . . . . . . 7
8 cc 8993 . . . . . . 7
9 cpm 7022 . . . . . . 7
107, 8, 9co 6084 . . . . . 6
115, 10wcel 1726 . . . . 5
12 vx . . . . . . 7
1312cv 1652 . . . . . 6
1413, 7wcel 1726 . . . . 5
15 vu . . . . . . . 8
1612, 15wel 1727 . . . . . . 7
17 vy . . . . . . . . . 10
1817cv 1652 . . . . . . . . 9
1915cv 1652 . . . . . . . . 9
205, 18cres 4883 . . . . . . . . 9
2118, 19, 20wf 5453 . . . . . . . 8
22 cuz 10493 . . . . . . . . 9
2322crn 4882 . . . . . . . 8
2421, 17, 23wrex 2708 . . . . . . 7
2516, 24wi 4 . . . . . 6
2625, 15, 6wral 2707 . . . . 5
2711, 14, 26w3a 937 . . . 4
2827, 4, 12copab 4268 . . 3
292, 3, 28cmpt 4269 . 2
301, 29wceq 1653 1
 Colors of variables: wff set class This definition is referenced by:  lmrel  17299  lmrcl  17300  lmfval  17301
 Copyright terms: Public domain W3C validator