MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lmic Structured version   Unicode version

Definition df-lmic 16100
Description: Two modules are said to be isomorphic iff they are connected by at least one isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-lmic  |-  ~=ph𝑚  =  ( `' LMIso  " ( _V  \  1o ) )

Detailed syntax breakdown of Definition df-lmic
StepHypRef Expression
1 clmic 16097 . 2  class  ~=ph𝑚
2 clmim 16096 . . . 4  class LMIso
32ccnv 4877 . . 3  class  `' LMIso
4 cvv 2956 . . . 4  class  _V
5 c1o 6717 . . . 4  class  1o
64, 5cdif 3317 . . 3  class  ( _V 
\  1o )
73, 6cima 4881 . 2  class  ( `' LMIso  " ( _V  \  1o ) )
81, 7wceq 1652 1  wff  ~=ph𝑚  =  ( `' LMIso  " ( _V  \  1o ) )
Colors of variables: wff set class
This definition is referenced by:  brlmic  16140
  Copyright terms: Public domain W3C validator