MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lp Structured version   Unicode version

Definition df-lp 17205
Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 17208. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
df-lp  |-  limPt  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } ) )
Distinct variable group:    x, j, y

Detailed syntax breakdown of Definition df-lp
StepHypRef Expression
1 clp 17203 . 2  class  limPt
2 vj . . 3  set  j
3 ctop 16963 . . 3  class  Top
4 vx . . . 4  set  x
52cv 1652 . . . . . 6  class  j
65cuni 4017 . . . . 5  class  U. j
76cpw 3801 . . . 4  class  ~P U. j
8 vy . . . . . . 7  set  y
98cv 1652 . . . . . 6  class  y
104cv 1652 . . . . . . . 8  class  x
119csn 3816 . . . . . . . 8  class  { y }
1210, 11cdif 3319 . . . . . . 7  class  ( x 
\  { y } )
13 ccl 17087 . . . . . . . 8  class  cls
145, 13cfv 5457 . . . . . . 7  class  ( cls `  j )
1512, 14cfv 5457 . . . . . 6  class  ( ( cls `  j ) `
 ( x  \  { y } ) )
169, 15wcel 1726 . . . . 5  wff  y  e.  ( ( cls `  j
) `  ( x  \  { y } ) )
1716, 8cab 2424 . . . 4  class  { y  |  y  e.  ( ( cls `  j
) `  ( x  \  { y } ) ) }
184, 7, 17cmpt 4269 . . 3  class  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `  (
x  \  { y } ) ) } )
192, 3, 18cmpt 4269 . 2  class  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `  (
x  \  { y } ) ) } ) )
201, 19wceq 1653 1  wff  limPt  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  |  y  e.  ( ( cls `  j ) `
 ( x  \  { y } ) ) } ) )
Colors of variables: wff set class
This definition is referenced by:  lpfval  17207
  Copyright terms: Public domain W3C validator