Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lsm Structured version   Unicode version

Definition df-lsm 15301
 Description: Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014.)
Assertion
Ref Expression
df-lsm
Distinct variable group:   ,,,,

Detailed syntax breakdown of Definition df-lsm
StepHypRef Expression
1 clsm 15299 . 2
2 vw . . 3
3 cvv 2962 . . 3
4 vt . . . 4
5 vu . . . 4
62cv 1652 . . . . . 6
7 cbs 13500 . . . . . 6
86, 7cfv 5483 . . . . 5
98cpw 3823 . . . 4
10 vx . . . . . 6
11 vy . . . . . 6
124cv 1652 . . . . . 6
135cv 1652 . . . . . 6
1410cv 1652 . . . . . . 7
1511cv 1652 . . . . . . 7
16 cplusg 13560 . . . . . . . 8
176, 16cfv 5483 . . . . . . 7
1814, 15, 17co 6110 . . . . . 6
1910, 11, 12, 13, 18cmpt2 6112 . . . . 5
2019crn 4908 . . . 4
214, 5, 9, 9, 20cmpt2 6112 . . 3
222, 3, 21cmpt 4291 . 2
231, 22wceq 1653 1
 Colors of variables: wff set class This definition is referenced by:  lsmfval  15303
 Copyright terms: Public domain W3C validator