Home Metamath Proof Explorer < Previous   Next > Related theorems Unicode version

Definition df-ltq 6560
 Description: Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 6758, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162.
Assertion
Ref Expression
df-ltq
Distinct variable group:   ,,,,,

Detailed syntax breakdown of Definition df-ltq
StepHypRef Expression
1 cltq 6502 . 2
2 vx . . . . . . 7
32cv 1585 . . . . . 6
4 cnq 6497 . . . . . 6
53, 4wcel 1588 . . . . 5
6 vy . . . . . . 7
76cv 1585 . . . . . 6
87, 4wcel 1588 . . . . 5
95, 8wa 337 . . . 4
10 vz . . . . . . . . . . . . . 14
1110cv 1585 . . . . . . . . . . . . 13
12 vw . . . . . . . . . . . . . 14
1312cv 1585 . . . . . . . . . . . . 13
1411, 13cop 3240 . . . . . . . . . . . 12
15 ceq 6496 . . . . . . . . . . . 12
1614, 15cec 5477 . . . . . . . . . . 11
173, 16wceq 1586 . . . . . . . . . 10
18 vv . . . . . . . . . . . . . 14
1918cv 1585 . . . . . . . . . . . . 13
20 vu . . . . . . . . . . . . . 14
2120cv 1585 . . . . . . . . . . . . 13
2219, 21cop 3240 . . . . . . . . . . . 12
2322, 15cec 5477 . . . . . . . . . . 11
247, 23wceq 1586 . . . . . . . . . 10
2517, 24wa 337 . . . . . . . . 9
26 cmi 6492 . . . . . . . . . . 11
2711, 21, 26co 4981 . . . . . . . . . 10
2813, 19, 26co 4981 . . . . . . . . . 10
29 clti 6493 . . . . . . . . . 10
3027, 28, 29wbr 3507 . . . . . . . . 9
3125, 30wa 337 . . . . . . . 8
3231, 20wex 1615 . . . . . . 7
3332, 18wex 1615 . . . . . 6
3433, 12wex 1615 . . . . 5
3534, 10wex 1615 . . . 4
369, 35wa 337 . . 3
3736, 2, 6copab 3565 . 2
381, 37wceq 1586 1
 Colors of variables: wff set class This definition is referenced by:  ltrelpq 6569  ordpipq 6574