MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lvec Structured version   Unicode version

Definition df-lvec 16167
Description: Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring multiplication is commutative i.e. a field. (Contributed by NM, 11-Nov-2013.)
Assertion
Ref Expression
df-lvec  |-  LVec  =  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }

Detailed syntax breakdown of Definition df-lvec
StepHypRef Expression
1 clvec 16166 . 2  class  LVec
2 vf . . . . . 6  set  f
32cv 1651 . . . . 5  class  f
4 csca 13524 . . . . 5  class Scalar
53, 4cfv 5446 . . . 4  class  (Scalar `  f )
6 cdr 15827 . . . 4  class  DivRing
75, 6wcel 1725 . . 3  wff  (Scalar `  f )  e.  DivRing
8 clmod 15942 . . 3  class  LMod
97, 2, 8crab 2701 . 2  class  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }
101, 9wceq 1652 1  wff  LVec  =  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }
Colors of variables: wff set class
This definition is referenced by:  islvec  16168
  Copyright terms: Public domain W3C validator