MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Unicode version

Definition df-n0 10227
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0  |-  NN0  =  ( NN  u.  { 0 } )

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 10226 . 2  class  NN0
2 cn 10005 . . 3  class  NN
3 cc0 8995 . . . 4  class  0
43csn 3816 . . 3  class  { 0 }
52, 4cun 3320 . 2  class  ( NN  u.  { 0 } )
61, 5wceq 1653 1  wff  NN0  =  ( NN  u.  { 0 } )
Colors of variables: wff set class
This definition is referenced by:  elnn0  10228  nnssnn0  10229  nn0ssre  10230  nn0ex  10232  dfn2  10239  nn0addcl  10260  nn0mulcl  10261  nn0ssz  10307
  Copyright terms: Public domain W3C validator