MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Unicode version

Definition df-n0 10214
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0  |-  NN0  =  ( NN  u.  { 0 } )

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 10213 . 2  class  NN0
2 cn 9992 . . 3  class  NN
3 cc0 8982 . . . 4  class  0
43csn 3806 . . 3  class  { 0 }
52, 4cun 3310 . 2  class  ( NN  u.  { 0 } )
61, 5wceq 1652 1  wff  NN0  =  ( NN  u.  { 0 } )
Colors of variables: wff set class
This definition is referenced by:  elnn0  10215  nnssnn0  10216  nn0ssre  10217  nn0ex  10219  dfn2  10226  nn0addcl  10247  nn0mulcl  10248  nn0ssz  10294
  Copyright terms: Public domain W3C validator