Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Structured version   Unicode version

Definition df-nfc 2560
 Description: Define the not-free predicate for classes. This is read " is not free in ". Not-free means that the value of cannot affect the value of , e.g., any occurrence of in is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1554 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3
2 cA . . 3
31, 2wnfc 2558 . 2
4 vy . . . . . 6
54cv 1651 . . . . 5
65, 2wcel 1725 . . . 4
76, 1wnf 1553 . . 3
87, 4wal 1549 . 2
93, 8wb 177 1
 Colors of variables: wff set class This definition is referenced by:  nfci  2561  nfcr  2563  nfcd  2566  nfceqi  2567  nfceqdf  2570  nfnfc1  2574  nfnfc  2577  drnfc1  2587  drnfc2  2588  dfnfc2  4025  nfnid  4385
 Copyright terms: Public domain W3C validator