Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-of Structured version   Unicode version

Definition df-of 6297
 Description: Define the function operation map. The definition is designed so that if is a binary operation, then is the analogous operation on functions which corresponds to applying pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
df-of
Distinct variable group:   ,,,

Detailed syntax breakdown of Definition df-of
StepHypRef Expression
1 cR . . 3
21cof 6295 . 2
3 vf . . 3
4 vg . . 3
5 cvv 2948 . . 3
6 vx . . . 4
73cv 1651 . . . . . 6
87cdm 4870 . . . . 5
94cv 1651 . . . . . 6
109cdm 4870 . . . . 5
118, 10cin 3311 . . . 4
126cv 1651 . . . . . 6
1312, 7cfv 5446 . . . . 5
1412, 9cfv 5446 . . . . 5
1513, 14, 1co 6073 . . . 4
166, 11, 15cmpt 4258 . . 3
173, 4, 5, 5, 16cmpt2 6075 . 2
182, 17wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  ofeq  6299  ofexg  6301  offval  6304  offval3  6310  ofmres  6335
 Copyright terms: Public domain W3C validator