MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oppg Unicode version

Definition df-oppg 15101
Description: Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 15687 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Assertion
Ref Expression
df-oppg  |- oppg  =  ( w  e.  _V  |->  ( w sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  w
) >. ) )

Detailed syntax breakdown of Definition df-oppg
StepHypRef Expression
1 coppg 15100 . 2  class oppg
2 vw . . 3  set  w
3 cvv 2920 . . 3  class  _V
42cv 1648 . . . 4  class  w
5 cnx 13425 . . . . . 6  class  ndx
6 cplusg 13488 . . . . . 6  class  +g
75, 6cfv 5417 . . . . 5  class  ( +g  ` 
ndx )
84, 6cfv 5417 . . . . . 6  class  ( +g  `  w )
98ctpos 6441 . . . . 5  class tpos  ( +g  `  w )
107, 9cop 3781 . . . 4  class  <. ( +g  `  ndx ) , tpos  ( +g  `  w
) >.
11 csts 13426 . . . 4  class sSet
124, 10, 11co 6044 . . 3  class  ( w sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  w
) >. )
132, 3, 12cmpt 4230 . 2  class  ( w  e.  _V  |->  ( w sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  w
) >. ) )
141, 13wceq 1649 1  wff oppg  =  ( w  e.  _V  |->  ( w sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  w
) >. ) )
Colors of variables: wff set class
This definition is referenced by:  oppgval  15102
  Copyright terms: Public domain W3C validator