MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Unicode version

Definition df-oprab 5862
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 5861 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpt2 5983. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Distinct variable groups:    x, w    y, w    z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  set  x
3 vy . . 3  set  y
4 vz . . 3  set  z
51, 2, 3, 4coprab 5859 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ph }
6 vw . . . . . . . . 9  set  w
76cv 1622 . . . . . . . 8  class  w
82cv 1622 . . . . . . . . . 10  class  x
93cv 1622 . . . . . . . . . 10  class  y
108, 9cop 3643 . . . . . . . . 9  class  <. x ,  y >.
114cv 1622 . . . . . . . . 9  class  z
1210, 11cop 3643 . . . . . . . 8  class  <. <. x ,  y >. ,  z
>.
137, 12wceq 1623 . . . . . . 7  wff  w  = 
<. <. x ,  y
>. ,  z >.
1413, 1wa 358 . . . . . 6  wff  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )
1514, 4wex 1528 . . . . 5  wff  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
1615, 3wex 1528 . . . 4  wff  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
1716, 2wex 1528 . . 3  wff  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )
1817, 6cab 2269 . 2  class  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
195, 18wceq 1623 1  wff  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Colors of variables: wff set class
This definition is referenced by:  oprabid  5882  dfoprab2  5895  nfoprab1  5897  nfoprab2  5898  nfoprab3  5899  nfoprab  5900  oprabbid  5901  ssoprab2  5904  cbvoprab2  5919  eloprabga  5934  oprabrexex2  5963  eloprabi  6186  mpt20  6199  dftpos3  6252  colinearex  24683
  Copyright terms: Public domain W3C validator