MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ord Unicode version

Definition df-ord 4395
Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the epsilon relation. Variant of definition of [BellMachover] p. 468. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
df-ord  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  We  A ) )

Detailed syntax breakdown of Definition df-ord
StepHypRef Expression
1 cA . . 3  class  A
21word 4391 . 2  wff  Ord  A
31wtr 4113 . . 3  wff  Tr  A
4 cep 4303 . . . 4  class  _E
51, 4wwe 4351 . . 3  wff  _E  We  A
63, 5wa 358 . 2  wff  ( Tr  A  /\  _E  We  A )
72, 6wb 176 1  wff  ( Ord 
A  <->  ( Tr  A  /\  _E  We  A ) )
Colors of variables: wff set class
This definition is referenced by:  ordeq  4399  ordwe  4405  ordtr  4406  trssord  4409  ordelord  4414  ord0  4444  ordon  4574  dford2  7321  smobeth  8208  gruina  8440  dford5reg  24138  dfon2  24148  tfrALTlem  24276
  Copyright terms: Public domain W3C validator