MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-p1 Unicode version

Definition df-p1 14146
Description: Define poset unit. (Contributed by NM, 22-Oct-2011.)
Assertion
Ref Expression
df-p1  |-  1.  =  ( p  e.  _V  |->  ( ( lub `  p
) `  ( Base `  p ) ) )

Detailed syntax breakdown of Definition df-p1
StepHypRef Expression
1 cp1 14144 . 2  class  1.
2 vp . . 3  set  p
3 cvv 2788 . . 3  class  _V
42cv 1622 . . . . 5  class  p
5 cbs 13148 . . . . 5  class  Base
64, 5cfv 5255 . . . 4  class  ( Base `  p )
7 club 14076 . . . . 5  class  lub
84, 7cfv 5255 . . . 4  class  ( lub `  p )
96, 8cfv 5255 . . 3  class  ( ( lub `  p ) `
 ( Base `  p
) )
102, 3, 9cmpt 4077 . 2  class  ( p  e.  _V  |->  ( ( lub `  p ) `
 ( Base `  p
) ) )
111, 10wceq 1623 1  wff  1.  =  ( p  e.  _V  |->  ( ( lub `  p
) `  ( Base `  p ) ) )
Colors of variables: wff set class
This definition is referenced by:  p1val  14148
  Copyright terms: Public domain W3C validator