Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pc Unicode version

Definition df-pc 12890
 Description: Define the prime count function, which returns the largest exponent of a given prime (or other natural number) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
df-pc
Distinct variable group:   ,,,,,

Detailed syntax breakdown of Definition df-pc
StepHypRef Expression
1 cpc 12889 . 2
2 vp . . 3
3 vr . . 3
4 cprime 12758 . . 3
5 cq 10316 . . 3
63cv 1622 . . . . 5
7 cc0 8737 . . . . 5
86, 7wceq 1623 . . . 4
9 cpnf 8864 . . . 4
10 vx . . . . . . . . . . 11
1110cv 1622 . . . . . . . . . 10
12 vy . . . . . . . . . . 11
1312cv 1622 . . . . . . . . . 10
14 cdiv 9423 . . . . . . . . . 10
1511, 13, 14co 5858 . . . . . . . . 9
166, 15wceq 1623 . . . . . . . 8
17 vz . . . . . . . . . 10
1817cv 1622 . . . . . . . . 9
192cv 1622 . . . . . . . . . . . . . 14
20 vn . . . . . . . . . . . . . . 15
2120cv 1622 . . . . . . . . . . . . . 14
22 cexp 11104 . . . . . . . . . . . . . 14
2319, 21, 22co 5858 . . . . . . . . . . . . 13
24 cdivides 12531 . . . . . . . . . . . . 13
2523, 11, 24wbr 4023 . . . . . . . . . . . 12
26 cn0 9965 . . . . . . . . . . . 12
2725, 20, 26crab 2547 . . . . . . . . . . 11
28 cr 8736 . . . . . . . . . . 11
29 clt 8867 . . . . . . . . . . 11
3027, 28, 29csup 7193 . . . . . . . . . 10
3123, 13, 24wbr 4023 . . . . . . . . . . . 12
3231, 20, 26crab 2547 . . . . . . . . . . 11
3332, 28, 29csup 7193 . . . . . . . . . 10
34 cmin 9037 . . . . . . . . . 10
3530, 33, 34co 5858 . . . . . . . . 9
3618, 35wceq 1623 . . . . . . . 8
3716, 36wa 358 . . . . . . 7
38 cn 9746 . . . . . . 7
3937, 12, 38wrex 2544 . . . . . 6
40 cz 10024 . . . . . 6
4139, 10, 40wrex 2544 . . . . 5
4241, 17cio 5217 . . . 4
438, 9, 42cif 3565 . . 3
442, 3, 4, 5, 43cmpt2 5860 . 2
451, 44wceq 1623 1
 Colors of variables: wff set class This definition is referenced by:  pcval  12897  pc0  12907
 Copyright terms: Public domain W3C validator