Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pell14qr Unicode version

Definition df-pell14qr 27031
Description: Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
df-pell14qr  |- Pell14QR  =  ( x  e.  ( NN 
\NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) } )
Distinct variable group:    x, y, z, w

Detailed syntax breakdown of Definition df-pell14qr
StepHypRef Expression
1 cpell14qr 27027 . 2  class Pell14QR
2 vx . . 3  set  x
3 cn 9762 . . . 4  class  NN
4 csquarenn 27024 . . . 4  classNN
53, 4cdif 3162 . . 3  class  ( NN 
\NN )
6 vy . . . . . . . . 9  set  y
76cv 1631 . . . . . . . 8  class  y
8 vz . . . . . . . . . 10  set  z
98cv 1631 . . . . . . . . 9  class  z
102cv 1631 . . . . . . . . . . 11  class  x
11 csqr 11734 . . . . . . . . . . 11  class  sqr
1210, 11cfv 5271 . . . . . . . . . 10  class  ( sqr `  x )
13 vw . . . . . . . . . . 11  set  w
1413cv 1631 . . . . . . . . . 10  class  w
15 cmul 8758 . . . . . . . . . 10  class  x.
1612, 14, 15co 5874 . . . . . . . . 9  class  ( ( sqr `  x )  x.  w )
17 caddc 8756 . . . . . . . . 9  class  +
189, 16, 17co 5874 . . . . . . . 8  class  ( z  +  ( ( sqr `  x )  x.  w
) )
197, 18wceq 1632 . . . . . . 7  wff  y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )
20 c2 9811 . . . . . . . . . 10  class  2
21 cexp 11120 . . . . . . . . . 10  class  ^
229, 20, 21co 5874 . . . . . . . . 9  class  ( z ^ 2 )
2314, 20, 21co 5874 . . . . . . . . . 10  class  ( w ^ 2 )
2410, 23, 15co 5874 . . . . . . . . 9  class  ( x  x.  ( w ^
2 ) )
25 cmin 9053 . . . . . . . . 9  class  -
2622, 24, 25co 5874 . . . . . . . 8  class  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )
27 c1 8754 . . . . . . . 8  class  1
2826, 27wceq 1632 . . . . . . 7  wff  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1
2919, 28wa 358 . . . . . 6  wff  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 )
30 cz 10040 . . . . . 6  class  ZZ
3129, 13, 30wrex 2557 . . . . 5  wff  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 )
32 cn0 9981 . . . . 5  class  NN0
3331, 8, 32wrex 2557 . . . 4  wff  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 )
34 cr 8752 . . . 4  class  RR
3533, 6, 34crab 2560 . . 3  class  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) }
362, 5, 35cmpt 4093 . 2  class  ( x  e.  ( NN  \NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  (
y  =  ( z  +  ( ( sqr `  x )  x.  w
) )  /\  (
( z ^ 2 )  -  ( x  x.  ( w ^
2 ) ) )  =  1 ) } )
371, 36wceq 1632 1  wff Pell14QR  =  ( x  e.  ( NN 
\NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) } )
Colors of variables: wff set class
This definition is referenced by:  pell14qrval  27036
  Copyright terms: Public domain W3C validator