Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-plpq Structured version   Unicode version

Definition df-plpq 8790
 Description: Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 9001, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition (df-plq 8796) works with the equivalence classes of these ordered pairs determined by the equivalence relation (df-enq 8793). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-plpq
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-plpq
StepHypRef Expression
1 cplpq 8728 . 2
2 vx . . 3
3 vy . . 3
4 cnpi 8724 . . . 4
54, 4cxp 4879 . . 3
62cv 1652 . . . . . . 7
7 c1st 6350 . . . . . . 7
86, 7cfv 5457 . . . . . 6
93cv 1652 . . . . . . 7
10 c2nd 6351 . . . . . . 7
119, 10cfv 5457 . . . . . 6
12 cmi 8726 . . . . . 6
138, 11, 12co 6084 . . . . 5
149, 7cfv 5457 . . . . . 6
156, 10cfv 5457 . . . . . 6
1614, 15, 12co 6084 . . . . 5
17 cpli 8725 . . . . 5
1813, 16, 17co 6084 . . . 4
1915, 11, 12co 6084 . . . 4
2018, 19cop 3819 . . 3
212, 3, 5, 5, 20cmpt2 6086 . 2
221, 21wceq 1653 1
 Colors of variables: wff set class This definition is referenced by:  addpipq2  8818  addpqnq  8820  addpqf  8826
 Copyright terms: Public domain W3C validator