Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-plusf Structured version   Unicode version

Definition df-plusf 14691
 Description: Define group addition function. Usually we will use directly instead of , and they have the same behavior in most cases. The main advantage of is that it is a guaranteed function (mndplusf 14706), while only has closure (mndcl 14695). (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df-plusf
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-plusf
StepHypRef Expression
1 cplusf 14687 . 2
2 vg . . 3
3 cvv 2956 . . 3
4 vx . . . 4
5 vy . . . 4
62cv 1651 . . . . 5
7 cbs 13469 . . . . 5
86, 7cfv 5454 . . . 4
94cv 1651 . . . . 5
105cv 1651 . . . . 5
11 cplusg 13529 . . . . . 6
126, 11cfv 5454 . . . . 5
139, 10, 12co 6081 . . . 4
144, 5, 8, 8, 13cmpt2 6083 . . 3
152, 3, 14cmpt 4266 . 2
161, 15wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  plusffval  14702
 Copyright terms: Public domain W3C validator