Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pm Structured version   Unicode version

Definition df-pm 7021
 Description: Define the partial mapping operation. A partial function from to is a function from a subset of to . The set of all partial functions from to is written (see pmvalg 7029). A notation for this operation apparently does not appear in the literature. We use to distinguish it from the less general set exponentiation operation (df-map 7020) . See mapsspm 7047 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
df-pm
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-pm
StepHypRef Expression
1 cpm 7019 . 2
2 vx . . 3
3 vy . . 3
4 cvv 2956 . . 3
5 vf . . . . . 6
65cv 1651 . . . . 5
76wfun 5448 . . . 4
83cv 1651 . . . . . 6
92cv 1651 . . . . . 6
108, 9cxp 4876 . . . . 5
1110cpw 3799 . . . 4
127, 5, 11crab 2709 . . 3
132, 3, 4, 4, 12cmpt2 6083 . 2
141, 13wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  fnpm  7026  pmvalg  7029
 Copyright terms: Public domain W3C validator