Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pnrm Structured version   Unicode version

Definition df-pnrm 17383
 Description: Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a Gδ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
df-pnrm PNrm
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-pnrm
StepHypRef Expression
1 cpnrm 17376 . 2 PNrm
2 vj . . . . . 6
32cv 1651 . . . . 5
4 ccld 17080 . . . . 5
53, 4cfv 5454 . . . 4
6 vf . . . . . 6
7 cn 10000 . . . . . . 7
8 cmap 7018 . . . . . . 7
93, 7, 8co 6081 . . . . . 6
106cv 1651 . . . . . . . 8
1110crn 4879 . . . . . . 7
1211cint 4050 . . . . . 6
136, 9, 12cmpt 4266 . . . . 5
1413crn 4879 . . . 4
155, 14wss 3320 . . 3
16 cnrm 17374 . . 3
1715, 2, 16crab 2709 . 2
181, 17wceq 1652 1 PNrm
 Colors of variables: wff set class This definition is referenced by:  ispnrm  17403
 Copyright terms: Public domain W3C validator