Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ps Structured version   Unicode version

Definition df-ps 14622
 Description: Define the class of all posets (partially ordered sets) with weak ordering (e.g. "less than or equal to" instead of "less than"). A poset is a relation which is transitive, reflexive, and antisymmetric. (Contributed by NM, 11-May-2008.)
Assertion
Ref Expression
df-ps

Detailed syntax breakdown of Definition df-ps
StepHypRef Expression
1 cps 14617 . 2
2 vr . . . . . 6
32cv 1651 . . . . 5
43wrel 4876 . . . 4
53, 3ccom 4875 . . . . 5
65, 3wss 3313 . . . 4
73ccnv 4870 . . . . . 6
83, 7cin 3312 . . . . 5
9 cid 4486 . . . . . 6
103cuni 4008 . . . . . . 7
1110cuni 4008 . . . . . 6
129, 11cres 4873 . . . . 5
138, 12wceq 1652 . . . 4
144, 6, 13w3a 936 . . 3
1514, 2cab 2422 . 2
161, 15wceq 1652 1
 Colors of variables: wff set class This definition is referenced by:  isps  14627
 Copyright terms: Public domain W3C validator