Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ptfin Structured version   Unicode version

Definition df-ptfin 26347
Description: Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010.)
Assertion
Ref Expression
df-ptfin  |-  PtFin  =  {
x  |  A. y  e.  U. x { z  e.  x  |  y  e.  z }  e.  Fin }
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-ptfin
StepHypRef Expression
1 cptfin 26343 . 2  class  PtFin
2 vy . . . . . . 7  set  y
3 vz . . . . . . 7  set  z
42, 3wel 1727 . . . . . 6  wff  y  e.  z
5 vx . . . . . . 7  set  x
65cv 1652 . . . . . 6  class  x
74, 3, 6crab 2711 . . . . 5  class  { z  e.  x  |  y  e.  z }
8 cfn 7111 . . . . 5  class  Fin
97, 8wcel 1726 . . . 4  wff  { z  e.  x  |  y  e.  z }  e.  Fin
106cuni 4017 . . . 4  class  U. x
119, 2, 10wral 2707 . . 3  wff  A. y  e.  U. x { z  e.  x  |  y  e.  z }  e.  Fin
1211, 5cab 2424 . 2  class  { x  |  A. y  e.  U. x { z  e.  x  |  y  e.  z }  e.  Fin }
131, 12wceq 1653 1  wff  PtFin  =  {
x  |  A. y  e.  U. x { z  e.  x  |  y  e.  z }  e.  Fin }
Colors of variables: wff set class
This definition is referenced by:  isptfin  26377
  Copyright terms: Public domain W3C validator