Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rgspn Structured version   Unicode version

Definition df-rgspn 15859
 Description: The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Assertion
Ref Expression
df-rgspn RingSpan SubRing
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-rgspn
StepHypRef Expression
1 crgspn 15857 . 2 RingSpan
2 vw . . 3
3 cvv 2948 . . 3
4 vs . . . 4
52cv 1651 . . . . . 6
6 cbs 13461 . . . . . 6
75, 6cfv 5446 . . . . 5
87cpw 3791 . . . 4
94cv 1651 . . . . . . 7
10 vt . . . . . . . 8
1110cv 1651 . . . . . . 7
129, 11wss 3312 . . . . . 6
13 csubrg 15856 . . . . . . 7 SubRing
145, 13cfv 5446 . . . . . 6 SubRing
1512, 10, 14crab 2701 . . . . 5 SubRing
1615cint 4042 . . . 4 SubRing
174, 8, 16cmpt 4258 . . 3 SubRing
182, 3, 17cmpt 4258 . 2 SubRing
191, 18wceq 1652 1 RingSpan SubRing
 Colors of variables: wff set class This definition is referenced by:  rgspnval  27341
 Copyright terms: Public domain W3C validator