MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-seq Unicode version

Definition df-seq 11287
Description: Define a general-purpose operation that builds a recursive sequence (i.e. a function on the natural numbers  NN or some other upper integer set) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by seq1 11299 and seqp1 11301. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation  +, an input sequence  F with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence  seq  1 (  +  ,  F ) with values 1, 3/2, 7/4, 15/8,.., so that  (  seq  1
(  +  ,  F
) `  1 )  =  1,  (  seq  1 (  +  ,  F ) `  2
)  = 3/2, etc. In other words, 
seq  M (  +  ,  F ) transforms a sequence  F into an infinite series.  seq  M (  +  ,  F )  ~~>  2 means "the sum of F(n) from n = M to infinity is 2." Since limits are unique (climuni 12309), by climdm 12311 the "sum of F(n) from n = 1 to infinity" can be expressed as  (  ~~>  `  seq  1
(  +  ,  F
) ) (provided the sequence converges) and evaluates to 2 in this example.

Internally, the  rec function generates as its values a set of ordered pairs starting at 
<. M ,  ( F `
 M ) >., with the first member of each pair incremented by one in each successive value. So, the range of  rec is exactly the sequence we want, and we just extract the range (restricted to omega) and throw away the domain.

This definition has its roots in a series of theorems from om2uz0i 11250 through om2uzf1oi 11256, originally proved by Raph Levien for use with df-exp 11346 and later generalized for arbitrary recursive sequences. Definition df-sum 12443 extracts the summation values from partial (finite) and complete (infinite) series. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 4-Sep-2013.)

Assertion
Ref Expression
df-seq  |-  seq  M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y

Detailed syntax breakdown of Definition df-seq
StepHypRef Expression
1 c.pl . . 3  class  .+
2 cF . . 3  class  F
3 cM . . 3  class  M
41, 2, 3cseq 11286 . 2  class  seq  M
(  .+  ,  F
)
5 vx . . . . 5  set  x
6 vy . . . . 5  set  y
7 cvv 2924 . . . . 5  class  _V
85cv 1648 . . . . . . 7  class  x
9 c1 8955 . . . . . . 7  class  1
10 caddc 8957 . . . . . . 7  class  +
118, 9, 10co 6048 . . . . . 6  class  ( x  +  1 )
126cv 1648 . . . . . . 7  class  y
1311, 2cfv 5421 . . . . . . 7  class  ( F `
 ( x  + 
1 ) )
1412, 13, 1co 6048 . . . . . 6  class  ( y 
.+  ( F `  ( x  +  1
) ) )
1511, 14cop 3785 . . . . 5  class  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.
165, 6, 7, 7, 15cmpt2 6050 . . . 4  class  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )
173, 2cfv 5421 . . . . 5  class  ( F `
 M )
183, 17cop 3785 . . . 4  class  <. M , 
( F `  M
) >.
1916, 18crdg 6634 . . 3  class  rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
20 com 4812 . . 3  class  om
2119, 20cima 4848 . 2  class  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
224, 21wceq 1649 1  wff  seq  M
(  .+  ,  F
)  =  ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) " om )
Colors of variables: wff set class
This definition is referenced by:  seqex  11288  seqeq1  11289  seqeq2  11290  seqeq3  11291  nfseq  11296  seqval  11297
  Copyright terms: Public domain W3C validator