MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-subgo Unicode version

Definition df-subgo 20969
Description: Define the set of subgroups of  g. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-subgo  |-  SubGrpOp  =  ( g  e.  GrpOp  |->  ( GrpOp  i^i 
~P g ) )

Detailed syntax breakdown of Definition df-subgo
StepHypRef Expression
1 csubgo 20968 . 2  class  SubGrpOp
2 vg . . 3  set  g
3 cgr 20853 . . 3  class  GrpOp
42cv 1622 . . . . 5  class  g
54cpw 3625 . . . 4  class  ~P g
63, 5cin 3151 . . 3  class  ( GrpOp  i^i 
~P g )
72, 3, 6cmpt 4077 . 2  class  ( g  e.  GrpOp  |->  ( GrpOp  i^i  ~P g ) )
81, 7wceq 1623 1  wff  SubGrpOp  =  ( g  e.  GrpOp  |->  ( GrpOp  i^i 
~P g ) )
Colors of variables: wff set class
This definition is referenced by:  issubgo  20970
  Copyright terms: Public domain W3C validator