MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tail Unicode version

Definition df-tail 14353
Description: Define the tail function for directed sets. (Contributed by Jeff Hankins, 25-Nov-2009.)
Assertion
Ref Expression
df-tail  |-  tail  =  ( r  e.  DirRel  |->  ( x  e.  U. U. r  |->  ( r " { x } ) ) )
Distinct variable group:    x, r

Detailed syntax breakdown of Definition df-tail
StepHypRef Expression
1 ctail 14351 . 2  class  tail
2 vr . . 3  set  r
3 cdir 14350 . . 3  class  DirRel
4 vx . . . 4  set  x
52cv 1622 . . . . . 6  class  r
65cuni 3827 . . . . 5  class  U. r
76cuni 3827 . . . 4  class  U. U. r
84cv 1622 . . . . . 6  class  x
98csn 3640 . . . . 5  class  { x }
105, 9cima 4692 . . . 4  class  ( r
" { x }
)
114, 7, 10cmpt 4077 . . 3  class  ( x  e.  U. U. r  |->  ( r " {
x } ) )
122, 3, 11cmpt 4077 . 2  class  ( r  e.  DirRel  |->  ( x  e. 
U. U. r  |->  ( r
" { x }
) ) )
131, 12wceq 1623 1  wff  tail  =  ( r  e.  DirRel  |->  ( x  e.  U. U. r  |->  ( r " { x } ) ) )
Colors of variables: wff set class
This definition is referenced by:  tailfval  25733
  Copyright terms: Public domain W3C validator