MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tru Structured version   Unicode version

Definition df-tru 1328
Description: Definition of  T., a tautology.  T. is a constant true. In this definition biid 228 is used as an antecedent, however, any true wff, such as an axiom, can be used in its place. (Contributed by Anthony Hart, 13-Oct-2010.)
Assertion
Ref Expression
df-tru  |-  (  T.  <->  (
ph 
<-> 
ph ) )

Detailed syntax breakdown of Definition df-tru
StepHypRef Expression
1 wtru 1325 . 2  wff  T.
2 wph . . 3  wff  ph
32, 2wb 177 . 2  wff  ( ph  <->  ph )
41, 3wb 177 1  wff  (  T.  <->  (
ph 
<-> 
ph ) )
Colors of variables: wff set class
This definition is referenced by:  tru  1330  uunT1  28829
  Copyright terms: Public domain W3C validator