MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vr1 Structured version   Unicode version

Definition df-vr1 16569
Description: Define the base element of a univariate power series (the 
X element of the set  R [ X ] of polynomials and also the  X in the set  R [ [ X ] ] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.)
Assertion
Ref Expression
df-vr1  |- var1  =  (
r  e.  _V  |->  ( ( 1o mVar  r ) `
 (/) ) )

Detailed syntax breakdown of Definition df-vr1
StepHypRef Expression
1 cv1 16562 . 2  class var1
2 vr . . 3  set  r
3 cvv 2948 . . 3  class  _V
4 c0 3620 . . . 4  class  (/)
5 c1o 6709 . . . . 5  class  1o
62cv 1651 . . . . 5  class  r
7 cmvr 16399 . . . . 5  class mVar
85, 6, 7co 6073 . . . 4  class  ( 1o mVar 
r )
94, 8cfv 5446 . . 3  class  ( ( 1o mVar  r ) `  (/) )
102, 3, 9cmpt 4258 . 2  class  ( r  e.  _V  |->  ( ( 1o mVar  r ) `  (/) ) )
111, 10wceq 1652 1  wff var1  =  (
r  e.  _V  |->  ( ( 1o mVar  r ) `
 (/) ) )
Colors of variables: wff set class
This definition is referenced by:  vr1val  16582
  Copyright terms: Public domain W3C validator