MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-we Unicode version

Definition df-we 4354
Description: Define the well-ordering predicate. For an alternate definition, see dfwe2 4573. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-we  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )

Detailed syntax breakdown of Definition df-we
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wwe 4351 . 2  wff  R  We  A
41, 2wfr 4349 . . 3  wff  R  Fr  A
51, 2wor 4313 . . 3  wff  R  Or  A
64, 5wa 358 . 2  wff  ( R  Fr  A  /\  R  Or  A )
73, 6wb 176 1  wff  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
Colors of variables: wff set class
This definition is referenced by:  nfwe  4369  wess  4380  weeq1  4381  weeq2  4382  wefr  4383  weso  4384  we0  4388  dfwe2  4573  weinxp  4757  wesn  4761  isowe  5846  isowe2  5847  wexp  6229  wofi  7106  dford5reg  24138
  Copyright terms: Public domain W3C validator