MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zrh Structured version   Unicode version

Definition df-zrh 16774
Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 14807). (Contributed by Mario Carneiro, 13-Jun-2015.)
Assertion
Ref Expression
df-zrh  |-  ZRHom  =  ( r  e.  _V  |->  U. ( (flds  ZZ ) RingHom  r ) )

Detailed syntax breakdown of Definition df-zrh
StepHypRef Expression
1 czrh 16770 . 2  class  ZRHom
2 vr . . 3  set  r
3 cvv 2948 . . 3  class  _V
4 ccnfld 16695 . . . . . 6  classfld
5 cz 10274 . . . . . 6  class  ZZ
6 cress 13462 . . . . . 6  classs
74, 5, 6co 6073 . . . . 5  class  (flds  ZZ )
82cv 1651 . . . . 5  class  r
9 crh 15809 . . . . 5  class RingHom
107, 8, 9co 6073 . . . 4  class  ( (flds  ZZ ) RingHom 
r )
1110cuni 4007 . . 3  class  U. (
(flds  ZZ ) RingHom  r )
122, 3, 11cmpt 4258 . 2  class  ( r  e.  _V  |->  U. (
(flds  ZZ ) RingHom  r ) )
131, 12wceq 1652 1  wff  ZRHom  =  ( r  e.  _V  |->  U. ( (flds  ZZ ) RingHom  r ) )
Colors of variables: wff set class
This definition is referenced by:  zrhval  16781
  Copyright terms: Public domain W3C validator